{ "cells": [ { "cell_type": "markdown", "id": "c6a29764-f39c-431c-8e77-fbc6bfe20f01", "metadata": {}, "source": [ "# Demo: mooring-level processing (Step 1)\n", "\n", "This notebook demonstrates the first of the mooring-level processing steps, time_gridding.\n", "\n" ] }, { "cell_type": "markdown", "id": "006edeaa", "metadata": {}, "source": [ "## Step 1: Time Gridding and Optional Filtering Demo\n", "\n", "This notebook demonstrates the Step 1 processing workflow for mooring data:\n", "- Loading multiple instrument datasets\n", "- Optional time-domain filtering (applied BEFORE interpolation)\n", "- Interpolating onto a common time grid\n", "- Combining into a unified mooring dataset\n", "\n", "**Key Point**: Filtering is applied to individual instrument records on their native time grids BEFORE interpolation to preserve data integrity.\n", "\n", "Version: 1.0 \n", "Date: 2025-09-07" ] }, { "cell_type": "code", "execution_count": 1, "id": "6a1920f3", "metadata": { "execution": { "iopub.execute_input": "2025-09-25T06:33:25.881842Z", "iopub.status.busy": "2025-09-25T06:33:25.881669Z", "iopub.status.idle": "2025-09-25T06:33:26.476041Z", "shell.execute_reply": "2025-09-25T06:33:26.475467Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import xarray as xr\n", "import matplotlib.pyplot as plt\n", "from pathlib import Path\n", "import yaml\n", "\n", "# Import the time gridding module\n", "from oceanarray.time_gridding import (\n", " TimeGriddingProcessor,\n", " time_gridding_mooring,\n", " process_multiple_moorings_time_gridding\n", ")\n", "\n", "# Set up plotting\n", "plt.style.use('default')\n" ] }, { "cell_type": "markdown", "id": "4ad6e0e5", "metadata": { "vscode": { "languageId": "javascript" } }, "source": [ "### Configuration\n", "\n", "First, let's set up our data paths and examine the mooring configuration." ] }, { "cell_type": "code", "execution_count": 2, "id": "ce860d75", "metadata": { "execution": { "iopub.execute_input": "2025-09-25T06:33:26.478114Z", "iopub.status.busy": "2025-09-25T06:33:26.477834Z", "iopub.status.idle": "2025-09-25T06:33:26.481436Z", "shell.execute_reply": "2025-09-25T06:33:26.481011Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Processing directory: ../data/moor/proc/dsE_1_2018\n", "Configuration file: ../data/moor/proc/dsE_1_2018/dsE_1_2018.mooring.yaml\n", "Config exists: True\n" ] } ], "source": [ "# Set your data paths here\n", "basedir = '../data'\n", "mooring_name = 'dsE_1_2018'\n", "\n", "# Construct paths\n", "proc_dir = Path(basedir) / 'moor' / 'proc' / mooring_name\n", "config_file = proc_dir / f\"{mooring_name}.mooring.yaml\"\n", "\n", "print(f\"Processing directory: {proc_dir}\")\n", "print(f\"Configuration file: {config_file}\")\n", "print(f\"Config exists: {config_file.exists()}\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "a4b5b029", "metadata": { "execution": { "iopub.execute_input": "2025-09-25T06:33:26.482986Z", "iopub.status.busy": "2025-09-25T06:33:26.482821Z", "iopub.status.idle": "2025-09-25T06:33:26.497410Z", "shell.execute_reply": "2025-09-25T06:33:26.496988Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mooring Configuration:\n", "Name: dsE_1_2018\n", "Water depth: 929 m\n", "Location: 65.47561666666667°N, -29.570083333333333°E\n", "\n", "Instruments (23):\n", " 1. sbe56 (serial: unknown) at 629 m\n", " 2. sbe16 (serial: unknown) at 679 m\n", " 3. sbe56 (serial: unknown) at 689 m\n", " 4. sbe56 (serial: unknown) at 699 m\n", " 5. sbe56 (serial: unknown) at 709 m\n", " 6. sbe56 (serial: unknown) at 719 m\n", " 7. sbe56 (serial: unknown) at 729 m\n", " 8. sbe56 (serial: unknown) at 739 m\n", " 9. sbe56 (serial: unknown) at 749 m\n", " 10. sbe56 (serial: unknown) at 759 m\n", " 11. sbe56 (serial: unknown) at 769 m\n", " 12. sbe16 (serial: unknown) at 780 m\n", " 13. tr1050 (serial: unknown) at 790 m\n", " 14. rbrsolo (serial: unknown) at 800 m\n", " 15. tr1050 (serial: unknown) at 810 m\n", " 16. rbrsolo (serial: unknown) at 820 m\n", " 17. tr1050 (serial: unknown) at 830 m\n", " 18. rbrsolo (serial: unknown) at 840 m\n", " 19. tr1050 (serial: unknown) at 850 m\n", " 20. rbrsolo (serial: unknown) at 860 m\n", " 21. tr1050 (serial: unknown) at 870 m\n", " 22. microcat (serial: unknown) at 880 m\n", " 23. sbe56 (serial: unknown) at 905 m\n" ] } ], "source": [ "# Load and examine the mooring configuration\n", "if config_file.exists():\n", " with open(config_file, 'r') as f:\n", " config = yaml.safe_load(f)\n", "\n", " print(\"Mooring Configuration:\")\n", " print(f\"Name: {config['name']}\")\n", " print(f\"Water depth: {config.get('waterdepth', 'unknown')} m\")\n", " print(f\"Location: {config.get('latitude', 'unknown')}°N, {config.get('longitude', 'unknown')}°E\")\n", " print(f\"\\nInstruments ({len(config.get('instruments', []))}):\")\n", "\n", " for i, inst in enumerate(config.get('instruments', [])):\n", " print(f\" {i+1}. {inst.get('instrument', 'unknown')} \"\n", " f\"(serial: {inst.get('serial num.', 'unknown')}) at {inst.get('depth', 'unknown')} m\")\n", "else:\n", " print(\"Configuration file not found!\")\n", " print(\"Please check your data path and mooring name.\")" ] }, { "cell_type": "markdown", "id": "c87567a6", "metadata": { "vscode": { "languageId": "javascript" } }, "source": [ "### Examine individual instrument files\n", "\n", "Let's look at the individual instrument files before processing to understand the different sampling rates and data characteristics." ] }, { "cell_type": "code", "execution_count": 4, "id": "b824bf8c", "metadata": { "execution": { "iopub.execute_input": "2025-09-25T06:33:26.499111Z", "iopub.status.busy": "2025-09-25T06:33:26.498935Z", "iopub.status.idle": "2025-09-25T06:33:26.544229Z", "shell.execute_reply": "2025-09-25T06:33:26.543758Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "| Instrument | Serial | Depth [m] | File | Start | End | Points | Sampling | Variables |\n", "|:-------------|---------:|------------:|:-----------------------|:--------------------|:--------------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------|\n", "| sbe56 | 6363 | 629 | MISSING | | | 0 | | |\n", "| sbe16 | 2419 | 679 | MISSING | | | 0 | | |\n", "| sbe56 | 6401 | 689 | MISSING | | | 0 | | |\n", "| sbe56 | 6402 | 699 | MISSING | | | 0 | | |\n", "| sbe56 | 8482 | 709 | MISSING | | | 0 | | |\n", "| sbe56 | 6365 | 719 | MISSING | | | 0 | | |\n", "| sbe56 | 6409 | 729 | MISSING | | | 0 | | |\n", "| sbe56 | 6397 | 739 | MISSING | | | 0 | | |\n", "| sbe56 | 6366 | 749 | MISSING | | | 0 | | |\n", "| sbe56 | 6394 | 759 | MISSING | | | 0 | | |\n", "| sbe56 | 6370 | 769 | MISSING | | | 0 | | |\n", "| sbe16 | 2418 | 780 | MISSING | | | 0 | | |\n", "| tr1050 | 13889 | 790 | MISSING | | | 0 | | |\n", "| rbrsolo | 101651 | 800 | MISSING | | | 0 | | |\n", "| tr1050 | 15580 | 810 | MISSING | | | 0 | | |\n", "| rbrsolo | 101647 | 820 | MISSING | | | 0 | | |\n", "| tr1050 | 13874 | 830 | MISSING | | | 0 | | |\n", "| rbrsolo | 101645 | 840 | MISSING | | | 0 | | |\n", "| tr1050 | 15574 | 850 | MISSING | | | 0 | | |\n", "| rbrsolo | 101646 | 860 | MISSING | | | 0 | | |\n", "| tr1050 | 15577 | 870 | MISSING | | | 0 | | |\n", "| microcat | 7518 | 880 | dsE_1_2018_7518_use.nc | 2018-08-13T07:25:51 | 2018-08-26T10:37:50 | 113473 | 10.0 sec | temperature, salinity, conductivity, pressure, serial_number, InstrDepth, instrument, clock_offset, start_time, end_time |\n", "| sbe56 | 6364 | 905 | MISSING | | | 0 | | |\n", "\n", "Found 1 instrument datasets\n" ] } ], "source": [ "# Find and examine individual instrument files\n", "file_suffix = \"_use\"\n", "instrument_files = []\n", "instrument_datasets = []\n", "rows = []\n", "\n", "if config_file.exists():\n", " for inst_config in config.get(\"instruments\", []):\n", " instrument_type = inst_config.get(\"instrument\", \"unknown\")\n", " serial = inst_config.get(\"serial\", 0)\n", " depth = inst_config.get(\"depth\", 0)\n", "\n", " # Look for the file\n", " filename = f\"{mooring_name}_{serial}{file_suffix}.nc\"\n", " filepath = proc_dir / instrument_type / filename\n", "\n", " if filepath.exists():\n", " ds = xr.open_dataset(filepath)\n", " instrument_files.append(filepath)\n", " instrument_datasets.append(ds)\n", "\n", " # Time coverage\n", " t0, t1 = ds.time.values[0], ds.time.values[-1]\n", " npoints = len(ds.time)\n", "\n", " # Median sampling interval\n", " time_diff = np.diff(ds.time.values) / np.timedelta64(1, \"m\") # in minutes\n", " median_interval = np.nanmedian(time_diff)\n", " if median_interval > 1:\n", " sampling = f\"{median_interval:.1f} min\"\n", " else:\n", " sampling = f\"{median_interval*60:.1f} sec\"\n", "\n", " # Collect a row for the table\n", " rows.append(\n", " {\n", " \"Instrument\": instrument_type,\n", " \"Serial\": serial,\n", " \"Depth [m]\": depth,\n", " \"File\": filepath.name,\n", " \"Start\": str(t0)[:19],\n", " \"End\": str(t1)[:19],\n", " \"Points\": npoints,\n", " \"Sampling\": sampling,\n", " \"Variables\": \", \".join(list(ds.data_vars)),\n", " }\n", " )\n", " else:\n", " rows.append(\n", " {\n", " \"Instrument\": instrument_type,\n", " \"Serial\": serial,\n", " \"Depth [m]\": depth,\n", " \"File\": \"MISSING\",\n", " \"Start\": \"\",\n", " \"End\": \"\",\n", " \"Points\": 0,\n", " \"Sampling\": \"\",\n", " \"Variables\": \"\",\n", " }\n", " )\n", "\n", " # Make a DataFrame summary\n", " summary = pd.DataFrame(rows)\n", " pd.set_option(\"display.max_colwidth\", 80) # allow long var lists\n", " print(summary.to_markdown(index=False))\n", "\n", " print(f\"\\nFound {len(instrument_datasets)} instrument datasets\")\n" ] }, { "cell_type": "markdown", "id": "dcd5ace6", "metadata": {}, "source": [ "### Process with time gridding (no filtering)" ] }, { "cell_type": "code", "execution_count": 5, "id": "9430b5f1", "metadata": { "execution": { "iopub.execute_input": "2025-09-25T06:33:26.545935Z", "iopub.status.busy": "2025-09-25T06:33:26.545777Z", "iopub.status.idle": "2025-09-25T06:33:26.832403Z", "shell.execute_reply": "2025-09-25T06:33:26.831901Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Processing mooring with time gridding only (no filtering)...\n", "============================================================\n", "Starting Step 1 (time gridding) processing for mooring: dsE_1_2018\n", "Using files with suffix: _use\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6363_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe16/dsE_1_2018_2419_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6401_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6402_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_8482_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6365_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6409_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6397_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6366_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6394_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6370_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe16/dsE_1_2018_2418_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/tr1050/dsE_1_2018_13889_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/rbrsolo/dsE_1_2018_101651_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/tr1050/dsE_1_2018_15580_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/rbrsolo/dsE_1_2018_101647_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/tr1050/dsE_1_2018_13874_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/rbrsolo/dsE_1_2018_101645_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/tr1050/dsE_1_2018_15574_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/rbrsolo/dsE_1_2018_101646_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/tr1050/dsE_1_2018_15577_use.nc\n", "Loading microcat serial 7518: dsE_1_2018_7518_use.nc\n", "WARNING: File not found: ../data/moor/proc/dsE_1_2018/sbe56/dsE_1_2018_6364_use.nc\n", "\n", "WARNING: Missing instruments compared to YAML configuration:\n", " - sbe56:6363\n", " - sbe16:2419\n", " - sbe56:6401\n", " - sbe56:6402\n", " - sbe56:8482\n", " - sbe56:6365\n", " - sbe56:6409\n", " - sbe56:6397\n", " - sbe56:6366\n", " - sbe56:6394\n", " - sbe56:6370\n", " - sbe16:2418\n", " - tr1050:13889\n", " - rbrsolo:101651\n", " - tr1050:15580\n", " - rbrsolo:101647\n", " - tr1050:13874\n", " - rbrsolo:101645\n", " - tr1050:15574\n", " - rbrsolo:101646\n", " - tr1050:15577\n", " - sbe56:6364\n", " Expected 23, found 1\n", "\n", "Loaded 1 instrument datasets\n", "Dataset 0 depth 880 [microcat:7518]:\n", " Start: 2018-08-13T07:25:51, End: 2018-08-26T10:37:50\n", " Time interval - Median: 10.02 sec, Range: 9.94 sec to 10.02 sec, Std: 0.04 sec\n", " Variables: ['temperature', 'salinity', 'conductivity', 'pressure', 'serial_number', 'InstrDepth', 'instrument', 'clock_offset', 'start_time', 'end_time']\n", "\n", "TIMING ANALYSIS:\n", " Overall median interval: 0.17 min\n", " Range of median intervals: 0.17 to 0.17 min\n", " Common grid will use 0.17 min intervals\n", " microcat:7518: 0.17 min -> 0.17 min (0.0% change) MINIMAL CHANGE\n", " Common time grid: 113472 points from 2018-08-13T07:25:51.008000000 to 2018-08-26T10:37:41.008000000\n", "\n", "INTERPOLATING FILTERED DATASETS ONTO COMMON GRID:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully interpolated dataset 0\n", "Variable 'u_velocity' not found in any dataset, skipping\n", "Variable 'v_velocity' not found in any dataset, skipping\n", "Successfully wrote time-gridded dataset: ../data/moor/proc/dsE_1_2018/dsE_1_2018_mooring_use.nc\n", "Combined dataset shape: {'time': 113472, 'N_LEVELS': 1}\n", "Variables: ['temperature', 'salinity', 'conductivity', 'pressure', 'instrument_id']\n", "\n", "Processing result: SUCCESS\n" ] } ], "source": [ "# Process without filtering\n", "print(\"Processing mooring with time gridding only (no filtering)...\")\n", "print(\"=\"*60)\n", "\n", "result = time_gridding_mooring(mooring_name, basedir, file_suffix='_use')\n", "\n", "print(f\"\\nProcessing result: {'SUCCESS' if result else 'FAILED'}\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "60fdf8e1", "metadata": { "execution": { "iopub.execute_input": "2025-09-25T06:33:26.834121Z", "iopub.status.busy": "2025-09-25T06:33:26.833869Z", "iopub.status.idle": "2025-09-25T06:33:26.846062Z", "shell.execute_reply": "2025-09-25T06:33:26.845589Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output file exists: ../data/moor/proc/dsE_1_2018/dsE_1_2018_mooring_use.nc\n" ] } ], "source": [ "# Load and examine the combined dataset\n", "output_file = proc_dir / f\"{mooring_name}_mooring_use.nc\"\n", "\n", "if output_file.exists():\n", " print(f\"Output file exists: {output_file}\")\n", "\n", " # Load the combined dataset\n", " combined_ds = xr.open_dataset(output_file)\n", "else:\n", " print(\"Output file not found - processing may have failed\")" ] }, { "cell_type": "markdown", "id": "ab26f061", "metadata": {}, "source": [ "### Visualize Combined Dataset\n", "\n", "Let's plot the combined dataset to see how the different instruments look on the common time grid.\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "68780c36", "metadata": { "execution": { "iopub.execute_input": "2025-09-25T06:33:26.847775Z", "iopub.status.busy": "2025-09-25T06:33:26.847588Z", "iopub.status.idle": "2025-09-25T06:33:27.645981Z", "shell.execute_reply": "2025-09-25T06:33:27.645446Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYMAAARDCAYAAAA6bT6DAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd402UXxvE73Yy2gLRA2cjeglBZsmSpIIjKVEDEwRBEtsieooCyHQwVF4q4UUBBkC2goK/I3lBWWzppm7x/YEND0zZp0yZNv5/r4jK/fZIc0+TkyXkMJpPJJAAAAAAAAACAW/NwdgAAAAAAAAAAgOxHMRgAAAAAAAAA8gCKwQAAAAAAAACQB1AMBgAAAAAAAIA8gGIwAAAAAAAAAOQBFIMBAAAAAAAAIA+gGAwAAAAAAAAAeQDFYAAAAAAAAADIAygGAwAAAAAAAEAeQDEYAAAAcKKTJ0/KYDDo9ddfz3DfSZMmyWAw5EBUqW3evFkGg0GbN292yPn69u2rcuXKOeRcrsie58pgMGjSpEnZGxAAAIAoBgMAADdlMBhs+ueowlZutHjxYq1cudLZYeS4pKQkrVixQi1atFCRIkXk6+urcuXKqV+/ftq7d6+zw8vV3OH/u7CwMI0ZM0a1atVSwYIF5efnp4oVK6pfv37atm2bs8MDAADIEi9nBwAAAJAdPvjgA4vl999/Xxs2bEi1vlq1ajkZlktZvHixihYtqr59+zo7lBwTGxurRx99VOvXr9f999+vcePGqUiRIjp58qQ+++wzrVq1SqdPn1apUqWcHapV48eP15gxY5wdRprs+f/unXfekdFozMnwMrR792499NBDunHjhrp3767nn39evr6+OnHihNatW6eVK1dqy5Ytuv/++zM8l6s/VwAAIG+iGAwAANxS7969LZZ37typDRs2pFrvLkwmk+Li4pQvXz7iSMfIkSO1fv16zZs3T8OGDbPYNnHiRM2bN885gdnIy8tLXl6u+xY+N/9/d/36dXXu3FleXl46cOCAqlatarF92rRp+uSTTzLM7ejoaBUoUMDlnysAAJA30SYCAADkWUajUfPnz1eNGjXk5+enYsWK6bnnntP169ct9itXrpwefvhhbd68Wffee6/y5cunWrVqmX/qvnbtWtWqVUt+fn6qX7++9u/fb3F83759VbBgQR0/flzt2rVTgQIFFBISoilTpshkMmUpph9//NEc07JlyyRJK1asUKtWrRQcHCxfX19Vr15dS5YsSXX8X3/9pS1btph/ut+iRQtJafc6XblypQwGg06ePGlTHOHh4Ro2bJhKly4tX19fVaxYUbNnz3baaNCzZ89q2bJlatOmTapCsCR5enpqxIgRFqOC9+/frw4dOiggIEAFCxZU69attXPnTovjkh+Xbdu26cUXX1RQUJAKFSqk5557Tjdv3lR4eLieeuopFS5cWIULF9aoUaNSPe/J5s2bp7Jlyypfvnxq3ry5Dh06ZLHd2nNjMBg0ePBgrVu3TjVr1pSvr69q1Kih9evXpzr/uXPn9PTTT6tYsWLm/ZYvX271sercubMKFCig4OBgvfTSS4qPj0/zsc2MO3sGp+ydvGjRIlWoUEH58+dX27ZtdebMGZlMJk2dOlWlSpVSvnz59Mgjj+jatWupzvvDDz+oWbNmKlCggPz9/fXQQw/pr7/+yjCepUuX6sKFC5o/f36qQrB063Hu0aOHGjRoYF6X/Hz8/fff6tmzpwoXLqymTZtabEspPj5eL730koKCguTv769OnTrp7Nmztj5kAAAAWcZX1QAAIM967rnntHLlSvXr108vvviiTpw4oYULF2r//v367bff5O3tbd736NGj6tmzp5577jn17t1br7/+ujp27KilS5dq3LhxGjhwoCRp5syZeuKJJ3T48GF5eNz+3j0pKUnt27fXfffdp9dee03r16/XxIkTlZiYqClTpmQqpsOHD6tHjx567rnnNGDAAFWpUkWStGTJEtWoUUOdOnWSl5eXvvnmGw0cOFBGo1GDBg2SJM2fP19DhgxRwYIF9corr0iSihUrlqnH0VocMTExat68uc6dO6fnnntOZcqU0fbt2zV27FhzwS2n/fDDD0pMTNSTTz5p0/5//fWXmjVrpoCAAI0aNUre3t5atmyZWrRooS1btig0NNRi/yFDhqh48eKaPHmydu7cqbfffluFChXS9u3bVaZMGc2YMUPff/+95syZo5o1a+qpp56yOP7999/XjRs3NGjQIMXFxenNN99Uq1atdPDgwQyfm23btmnt2rUaOHCg/P399dZbb6lr1646ffq07rrrLknSpUuXdN9995mLx0FBQfrhhx/Uv39/RUZGmgvksbGxat26tU6fPq0XX3xRISEh+uCDD/Tzzz/b+EhnzerVq3Xz5k0NGTJE165d02uvvaYnnnhCrVq10ubNmzV69GgdPXpUCxYs0IgRIyyK2R988IH69Omjdu3aafbs2YqJidGSJUvUtGlT7d+/P90J67755hvly5dPjz76qN0xP/7446pUqZJmzJiRZqFfkp555hl9+OGH6tmzpxo3bqyff/5ZDz30kN3XAwAAyDQTAABAHjBo0CBTyrc+W7duNUkyrV692mK/9evXp1pftmxZkyTT9u3bzet+/PFHkyRTvnz5TKdOnTKvX7ZsmUmS6ZdffjGv69Onj0mSaciQIeZ1RqPR9NBDD5l8fHxMly9fznRM69evT3VfY2JiUq1r166dqUKFChbratSoYWrevHmqfSdOnGiy9jZxxYoVJkmmEydOZBjH1KlTTQUKFDD9+++/FuvHjBlj8vT0NJ0+fTrV+bPbSy+9ZJJk2r9/v037d+7c2eTj42M6duyYed358+dN/v7+pvvvv9+8LvlxadeuncloNJrXN2rUyGQwGEzPP/+8eV1iYqKpVKlSFo/7iRMnzLl09uxZ8/pdu3aZJJleeukl8zprz40kk4+Pj+no0aPmdX/88YdJkmnBggXmdf379zeVKFHCdOXKFYvju3fvbgoMDDTnzfz5802STJ999pl5n+joaFPFihVT5XZG7vz/LqU+ffqYypYtm+pxCAoKMoWHh5vXjx071iTJVKdOHVNCQoJ5fY8ePUw+Pj6muLg4k8lkMt24ccNUqFAh04ABAyyuc/HiRVNgYGCq9XcqXLiwqW7duqnWR0ZGmi5fvmz+FxUVZd6W/Hz06NEj1XF3PlcHDhwwSTINHDjQYr+ePXuaJJkmTpyYbnwAAACOQJsIAACQJ61Zs0aBgYFq06aNrly5Yv5Xv359FSxYUL/88ovF/tWrV1ejRo3My8mjQlu1aqUyZcqkWn/8+PFU1xw8eLD5dvLozJs3b2rjxo2Ziql8+fJq165dquuk7GkaERGhK1euqHnz5jp+/LgiIiJsfoxsZS2ONWvWqFmzZipcuLDFfXnggQeUlJSkX3/91eFxZCQyMlKS5O/vn+G+SUlJ+umnn9S5c2dVqFDBvL5EiRLq2bOntm3bZj5fsv79+1u0BQgNDZXJZFL//v3N6zw9PXXvvfdazY/OnTurZMmS5uWGDRsqNDRU33//fYbxPvDAA7r77rvNy7Vr11ZAQID5OiaTSV988YU6duwok8lk8Zy0a9dOERER2rdvnyTp+++/V4kSJfTYY4+Zz5c/f349++yzGcbhCI8//rgCAwPNy8n/T/Xu3duiB29oaKhu3rypc+fOSZI2bNig8PBw9ejRw+L+eXp6KjQ0NNX/P3eKjIxUwYIFU61/8sknFRQUZP43evToVPs8//zzGd6v5OfxxRdftFhvrWUJAABAdqFNBAAAyJOOHDmiiIgIBQcHW90eFhZmsZyy4CvJXKwqXbq01fV39vj18PCwKCpKUuXKlSXJ3IPX3pjKly9vdb/ffvtNEydO1I4dOxQTE2OxLSIiwqLQ5gjW4jhy5Ij+/PNPBQUFWT3mzvuSUkREhGJjYzMVS2BgYJoTfAUEBEiSbty4keF5Ll++rJiYGHPrjZSqVasmo9GoM2fOqEaNGub19uTInfkhSZUqVUq1rnLlyvrss88yjPfOa0tS4cKFzde5fPmywsPD9fbbb+vtt9+2eo7k5+TUqVOqWLFiqn631h6L7JDZ/9eOHDki6dYXNNYkP/9p8ff3V1RUVKr1U6ZMMX+R06ZNG6vHpvX/YkqnTp2Sh4eHRdFeyrnHFQAAQKIYDAAA8iij0ajg4GCtXr3a6vY7i5ienp5W90trvSmdvqGOisla0fPYsWNq3bq1qlatqrlz56p06dLy8fHR999/r3nz5tk0eZu1yeOkW6NlrbEWh9FoVJs2bTRq1CirxyQXwq0ZOnSoVq1alWGc1qxYsUJ9+/a1ui15UrCDBw+qbt26mTp/euzJkczkR2aunXyd5Oe9d+/e6tOnj9V9a9eu7dCYMiuz/68l38cPPvhAxYsXT7VfylHF1lStWlV//PGHEhISLHpz2/K4pPUFBAAAgKuhGAwAAPKku+++Wxs3blSTJk1ypJBjNBp1/PhxiyLov//+K0nmSa0cEdM333yj+Ph4ff311xYjLK39RD6tom/hwoUlSeHh4SpUqJB5/alTp2yO4+6771ZUVJQeeOABm49JNmrUKPXu3dvu4yRZjNS9U4cOHeTp6akPP/www0nkgoKClD9/fh0+fDjVtn/++UceHh6pRqpmVfLI1pT+/fffdCc9s1VQUJD8/f2VlJSU4XNStmxZHTp0SCaTySJHrD0WriR5xG1wcHCm8u7hhx/Wzp079eWXX+qJJ55wdHgqW7asjEajjh07ZjEa2NUfVwAA4F7oGQwAAPKkJ554QklJSZo6dWqqbYmJiQoPD3f4NRcuXGi+bTKZtHDhQnl7e6t169YOiyl59GTKkacRERFasWJFqn0LFChg9ZzJRbWUfX2jo6PtGq37xBNPaMeOHfrxxx9TbQsPD1diYmKax1avXl0PPPBApv6VKFEizfOWLl1aAwYM0E8//aQFCxak2m40GvXGG2/o7Nmz8vT0VNu2bfXVV1+Z23hI0qVLl/TRRx+padOmGbYdsNe6devM/W8laffu3dq1a5c6dOiQ5XN7enqqa9eu+uKLL3To0KFU2y9fvmy+/eCDD+r8+fP6/PPPzetiYmLSbC/hKtq1a6eAgADNmDFDCQkJqbanvI/WvPDCCypWrJheeukl8xc1KWV1NHfy8/jWW29ZrJ8/f36WzgsAAGAPRgYDAIA8qXnz5nruuec0c+ZMHThwQG3btpW3t7eOHDmiNWvW6M0337SYQCur/Pz8tH79evXp00ehoaH64Ycf9N1332ncuHHm9g+OiKlt27by8fFRx44d9dxzzykqKkrvvPOOgoODdeHCBYt969evryVLlmjatGmqWLGigoOD1apVK7Vt21ZlypRR//79NXLkSHl6emr58uUKCgrS6dOnbbq/I0eO1Ndff62HH35Yffv2Vf369RUdHa2DBw/q888/18mTJ1W0aNHMPZhZ8MYbb+jYsWN68cUXtXbtWj388MMqXLiwTp8+rTVr1uiff/5R9+7dJUnTpk3Thg0b1LRpUw0cOFBeXl5atmyZ4uPj9dprrzk8tooVK6pp06Z64YUXFB8fr/nz5+uuu+5Ks9WGvWbNmqVffvlFoaGhGjBggKpXr65r165p37592rhxo65duyZJGjBggBYuXKinnnpKv//+u0qUKKEPPvhA+fPnd0gc2SUgIEBLlizRk08+qXr16ql79+7mnP3uu+/UpEkTiy9k7lSkSBF9+eWX6tixo+rUqaPu3burQYMG8vb21pkzZ7RmzRpJ1vsz26Ju3brq0aOHFi9erIiICDVu3FibNm3S0aNHM3U+AACAzKAYDAAA8qylS5eqfv36WrZsmcaNGycvLy+VK1dOvXv3VpMmTRx6LU9PT61fv14vvPCCRo4cKX9/f02cOFETJkxwaExVqlTR559/rvHjx2vEiBEqXry4XnjhBQUFBenpp5+22HfChAk6deqUXnvtNd24cUPNmzdXq1at5O3trS+//FIDBw7Uq6++quLFi2vYsGEqXLiw+vXrZ9P9zZ8/v7Zs2aIZM2ZozZo1ev/99xUQEKDKlStr8uTJDp/Ezlb58+fXDz/8oJUrV2rVqlWaOnWqYmJiFBISolatWmn16tUqWbKkpFstJ7Zu3aqxY8dq5syZMhqNCg0N1YcffqjQ0FCHx/bUU0/Jw8ND8+fPV1hYmBo2bKiFCxemO9rZHsWKFdPu3bs1ZcoUrV27VosXL9Zdd92lGjVqaPbs2eb98ufPr02bNmnIkCFasGCB8ufPr169eqlDhw5q3769Q2LJLj179lRISIhmzZqlOXPmKD4+XiVLllSzZs1syt1GjRrp0KFDmjt3rr777jt9+umnMhqNKlmypJo2baq3335bzZo1y3R8yV+qrF69WuvWrVOrVq303XffObzlCAAAQFoMJkfPXgEAAAALffv21eeff66oqChnhwIAAAAgD6NnMAAAAAAAAADkARSDAQAAAAAAACAPoBgMAAAAAAAAAHkAPYMBAAAAAAAAIA9gZDAAAAAAAAAA5AEUgwEAAAAAAAAgD/BydgCuyGg06vz58/L395fBYHB2OAAAAAAAAABcnMlk0o0bNxQSEiIPD9ccg0sx2Irz58+rdOnSzg4DAAAAAAAAQC5z5swZlSpVytlhWEUx2Ap/f39Jt564gICAHL220WjU5cuXFRQU5JRvEK5fjtDUx9/I0jlemNtXJ/86ox/e2+SgqDI2d/OUHLsWbOfsfAYciXyGOyGf4U7IZ7gbchruhHyGO7ElnyMjI1W6dGlzbdEVUQy2Irk1REBAgFOKwXFxcQoICMjxF8pZT76l0/+ck4+nb6ptT0/vqWMHTmrLmu2ptr3+8ySNaDXJvFyveR3Vb1FX106Fa/8vhyRJr346XAFF/XX28Hn9ueVv/fLpb5KkIsUL6drFcKvx1GxSVYk3E3Xu2EXduBaVbuw5/TzBNs7MZ8DRyGe4E/IZ7oR8hrshp+FOyGe4E3vy2ZXbzlIMhiTp5F9ndPqfc1a3dRvVWfe2raOLJ8Is1s/ZNFEFAvLLaDSa11VtUNGc8CEVi5uLwX4F/VQgIL+qNKioKg0qKrhMUdVoWlVFQ4roeliEDm39n5p0aahNq7eqTNWS+uu3w3pkSHt5enpKkq5dvK5CwYG6djFcr/VZqKjwaPM1vX1IYwAAAAAAACAjfC0D/bHlL73Wd2Ga25t1DZUkNep0r3ldt1GdVSAgvyRZfBtyZN9x8+3v3tlovu3ja1mwbf5EYxUNKSJJKhwcqGZd75OHh4faPNlcVRpU1KPDHjIXgiWpSPHC8vDwUNGQInptwwR1efHB2ydz4W9bAAAAAAAAAFdBMRhaNuJ98+1ZP47Xot2zdG/bOpKkNk82Nxd7/Qrcbh+x89u9Vs+VlHR7lLCPn7f5tsHBPwdp3auZ+kzupgq1ykomk0PPDQAAAAAAALgjisF5nOmOQmpAEX8ZDAY9Pb2nXv95kjoP6WDe5pf/djG4aMm7rJ6v96uPmW9P/GKk+baXt6e13TPNw8NDoQ/WU4HA/A49LwAAAAAAAOCuKAbncZFXb5hvz/pxvMW2/P75LBpee3rdLuh2ebGDxb4vLXtO9VrXUqOOt1tJFA4ONN/28fNxWMwAAAAAAAAA7MfMW3nc2A7TzbcDivhnuP/8bdMUHxMv/8IFLdZXqldBlepVSLX/Kx8Py9YZFGkXDAAAAAAAANiGYnAeV65maZ08dMbm/X18veXj653xjv8pWbFEZsKyy52tLgAAAAAAAACkRpuIPK5Q0QBnhwAAAAAAAAAgB1AMzuMObP5LklS4WGAGe7ouBgYDAAAAAIDcYO3atapfv77q1q2rqlWrqlWrVjIajXaf5+uvv9ZLL72U4X4rV65U586drW7r0qWL6tata/7n4eGhr7/+WpI0adIkBQUFmbf16tXLfNx3332n+vXry9fXV8OGDbM45+XLl9WxY0fVrl1b1apVU58+fRQbG5tmfI8//rh27NiR4bGxsbF66qmnVLNmTdWsWVOdOnXS5cuXzed57733VKlSJd19990aMGCAEhISMnxsMtKsWTOdOHEiy+dxNRSDIUnqNqqzs0PIHJoGAwAAAACAXODChQt69tlntXbtWh04cED//POPXn/9dbvnWkpMTFSnTp00b968LMXz5Zdf6sCBAzpw4IDeffddFSlSRO3btzdv79Wrl3n76tWrzesrVaqk5cuXa+TIkanOOX36dFWqVEl//vmnDh06pEuXLmnFihVWr797925du3ZNjRo1yvDYZcuWKSYmRgcPHtShQ4dUrFgxzZkzR5J04sQJvfrqq9q6dauOHj2qS5cu6e23387SYyNJL7/8siZOnJjl87gap/YMnjlzptauXat//vlH+fLlU+PGjTV79mxVqVLFvE9cXJxefvllffLJJ4qPj1e7du20ePFiFStWLM3zmkwmTZw4Ue+8847Cw8PVpEkTLVmyRJUqVcqJu5UrFQjM7+wQMo+hwQAAAAAAIANLh6/U5XPXsuXcQSWL6Pm5fdPd59KlS/L09FSRIkXM6+rVq2e+feTIEQ0bNkxhYWGKj4/Xs88+q8GDB0uSDAaDJkyYoO+//14tWrRQjRo1tG7dOq1bt04XL15Ujx49FBkZqbi4OLVs2VJvvfWWPDxsHwP63nvvqXfv3vLx8clw38qVK0u6VUy+k8Fg0I0bN2Q0GnXz5k3FxMSoVKlSVs+zbNky9ezZ06ZjDQaDYmJilJCQIA8PD0VFRalWrVqSpM8//1ydOnVS8eLFJUnPP/+8ZsyYoUGDBqW6Zrly5dS7d2/9/PPPOnPmjF555RX5+vrq7bff1oULFzRr1ix1795dkvTQQw9pwIABioiIUGBg7v1F/Z2cOjJ4y5YtGjRokHbu3KkNGzYoISFBbdu2VXR0tHmfl156Sd98843WrFmjLVu26Pz583r00UfTPe9rr72mt956S0uXLtWuXbtUoEABtWvXTnFxcdl9l3KdJ0Z0krevt8rXKuPsUDLF3m/PAAAAAAAAnKF27dpq2rSpypYtqy5dumjOnDk6d+6cJCkpKUk9evTQG2+8oT179mjnzp16++23tWfPHvPxnp6e2rNnj3lEbLJChQrpm2++0e+//64///xTJ0+e1GeffWZzXLGxsfr444/Vv39/i/Vr1qxRnTp11KpVK/3yyy82nevVV1/V0aNHVbx4cQUHB6tatWrq1KmT1X03b96s0NBQm4597rnn5O/vr+DgYBUrVkwRERHmQvnp06dVtmxZ83nKlSun06dPpxljdHS0tm/frl9++UUvvfSSzp07px07dmjNmjUaMmSIeT9vb2/VqlVLW7dutem+5xZOHRm8fv16i+WVK1cqODhYv//+u+6//35FRETovffe00cffaRWrVpJklasWKFq1app586duu+++1Kd02Qyaf78+Ro/frweeeQRSdL777+vYsWKad26debqPm5p0a2JWnRr4uwwssTEyGAAAAAAAJCBjEbuZjcPDw998cUX+ueff7Rlyxb98MMPmj59uvbu3aubN2/qr7/+sqhb3bhxQ3///bcaNGggSXr66aetntdoNGr06NHatm2bTCaTwsLCVLNmTZtrYJ9//rkqV65sHmkr3Rpd+8orr8jb21u//fabunTpoj179lgUXa355JNPVL16dW3cuFExMTHq1KmT3n33XT3zzDOp9j179qzFL//TO/ann36S0WjUxYsX5eHhob59+2rChAmaNm2aTfcxpW7dukmSKlasKD8/Pz322GOSpHvvvVfXrl1TeHi4ChUqJEkqXry4zp49a/c1XJlTi8F3ioiIkCTzcPnff/9dCQkJeuCBB8z7VK1aVWXKlNGOHTusFoNPnDihixcvWhwTGBio0NBQ7dixw+r/CPHx8YqPjzcvR0ZGSrr1P1NmmnhnhdFolMlkyvHr5mYmk3i8XBT5DHdCPsOdkM9wJ+Qz3A05DXdCPltXuXJlVa5cWQMGDFCHDh301VdfqW3btipSpIj27duXav/kxy9//vzm2ykf2zfeeEOXLl3Sjh075Ofnp5dfflmxsbHmulZGz8F7772nfv36WewTHBxsvk6jRo1Ut25d7d69W6VLlzbvYzKZUp178eLFWrp0qQwGgwoUKKCuXbvq559/tlrIzp8/v2JiYszHp3fssmXL1KNHD3Mbix49emjWrFkyGo0qXbq0jh07Zj7P8ePHVaZMmTTvs4+Pj3mbp6enxbLBYNDNmzfNy7GxsfL19bX5scwNue4yxWCj0ahhw4apSZMmqlmzpiTp4sWL8vHxMVfjkxUrVkwXL160ep7k9Xf2FE7vmJkzZ2ry5Mmp1l++fDnHW0sYjUZFRETIZDLZ1dslr4qJiVFiYoLCwsKcHQqsIJ/hTshnuBPyGe6EfIa7IafhTshnSxcuXNCZM2fUsGFDSVJ4eLiOHTumu+66S4ULF1b+/Pn11ltvmQcynjhxQoUKFVLhwoUl3apT3bx5U9KtUcPx8fEKCwvTuXPnFBgYqMjISB09elSfffaZHnzwQYWFhVnsZ82JEye0Z88evfPOOxb7nD9/XiEhIZJuFVf379+vkJAQi32io6MVExNjsa5kyZJau3atKlasqISEBH3zzTeqX7++1etXrVpVu3btkq+vb4bHlihRQt98841at24tSfriiy9UoUIFhYWFqXnz5po7d64GDRqkoKAgLViwwHz/75SUlKRr166ZtxmNRl29elX589+eS+vy5cvmou6hQ4c0aNAghYWF2ZTPN27csLrelbhMMXjQoEE6dOiQtm3bluPXHjt2rIYPH25ejoyMVOnSpRUUFKSAgIAcjcVoNMpgMCgoKIgXShsUKJBfXl7e5m+s4FrIZ7gT8hnuhHyGOyGf4W7IabgT8tlSbGysRo8erZMnTyp//vxKTExUv3799NRTT0mSvv/+e7300ktavny5kpKSVLRoUX344YfmmkdQUJB5wKS/v798fX0VHBysMWPG6IknnlDr1q1VokQJtWnTRvnz51dwcLDFfta8+eab6tq1q+6++26L9aNGjdK+ffvk5eUlT09PLVq0SI0aNZIkbdq0Sf369VNkZKRMJpN++OEHLVy4UJ06ddLixYv1wgsvqE2bNkpKStJ9992n8ePHy8/PL9W1e/Tood27d5vbNKR37KxZs/Tcc8+ZOwFUqVJFS5cuVdGiRRUcHKzJkyerS5cukqTmzZvr5Zdflre3d6prJk/gl/x4eHh46K677rJ4fIKCglS0aFGdPHlSBoNBLVu2lMFgsCmfrd1PV2MwuUDD1cGDB+urr77Sr7/+qvLly5vX//zzz2rdurWuX79uMTq4bNmyGjZsmF566aVU5zp+/Ljuvvtu7d+/X3Xr1jWvb968uerWras333wzw3giIyMVGBioiIgIpxSDw8LCFBwczAulDd4Z9YEObP5Li3bPcnYosIJ8hjshn+FOyGe4E/IZ7oachjshn5GeqKgoNW7cWDt27FCBAgWcHU4qY8aMUcWKFc39jm3JZ2fWFG3l1P8TTSaTBg8erC+//FI///yzRSFYkurXry9vb29t2rTJvO7w4cM6ffq0+duIO5UvX17Fixe3OCYyMlK7du1K8xgAAAAAAAAAOadgwYKaN2+eTpw44exQrAoJCUlz0r7czKltIgYNGqSPPvpIX331lfz9/c09fQMDA5UvXz4FBgaqf//+Gj58uIoUKaKAgAANGTJEjRo1spg8rmrVqpo5c6a6dOkig8GgYcOGadq0aapUqZLKly+vV199VSEhIercubOT7imykwsMbgcAAAAAAICdknsAu6IXX3zR2SFkC6cWg5csWSJJatGihcX6FStWqG/fvpKkefPmycPDQ127dlV8fLzatWunxYsXW+x/+PBhRUREmJdHjRql6OhoPfvsswoPD1fTpk21fv36XNG3A3YyGJwdAQAAAAAAAJArOLUYbMuITj8/Py1atEiLFi2y+TwGg0FTpkzRlClTshwjAAAAAAAAALgDuncjV2NgMAAAAAAAAGAbisFwC/QNBgAAAAAAANJHMRi5muG/ocEUgwEAAAAAAID0UQwGAAAAAAAAgDyAYjByN5oGAwAAAAAAADahGAwAAAAAAAAAeQDFYLgFegYDAAAAAAAA6aMYDAAAAAAAAAB5AMVg5GrmlsEMDAYAAAAAAADSRTEYAAAAAAAAAPIAisHI1Qz/DQ2mZzAAAAAAAACQPorBAAAAAAAAAJAHUAxGrsbIYAAAAAAAAMA2FIMBAAAAAAAAIA+gGIzczeDsAAAAAAAAAIDcgWIwAAAAAAAAAOQBFIPhFmgZDAAAAAAAAKSPYjAAAAAAAAAA5AEUg5GrGQz/NQ1maDAAAAAAAACQLorBAAAAAAAAAJAHUAxGrpY8MtjEyGAAAAAAAAAgXRSDAQAAAAAAACAPoBiMXO32yGAnBwIAAAAAAAC4OIrBAAAAAAAAAJAHUAxG7mZwdgAAAAAAAABA7kAxGAAAAAAAAADyAKcWg3/99Vd17NhRISEhMhgMWrduncV2g8Fg9d+cOXPSPOekSZNS7V+1atVsvidwNhNNgwEAAAAAAIB0ObUYHB0drTp16mjRokVWt1+4cMHi3/Lly2UwGNS1a9d0z1ujRg2L47Zt25Yd4QMAAAAAAABAruHlzIt36NBBHTp0SHN78eLFLZa/+uortWzZUhUqVEj3vF5eXqmOhXsyGP5rGszIYAAAAAAAACBdTi0G2+PSpUv67rvvtGrVqgz3PXLkiEJCQuTn56dGjRpp5syZKlOmTJr7x8fHKz4+3rwcGRkpSTIajTIajVkP3g5Go1EmkynHr5tbJbeHMBp5zFwR+Qx3Qj7DnZDPcCfkM9wNOQ13Qj7DndiSz7kh13NNMXjVqlXy9/fXo48+mu5+oaGhWrlypapUqaILFy5o8uTJatasmQ4dOiR/f3+rx8ycOVOTJ09Otf7y5cuKi4tzSPy2MhqNioiIkMlkkocH8/tlJDomWokJCQoLC1O+GD9nh4M7kM9wJ+Qz3An5DHdCPsPdkNNwJ+Qz3Ikt+Xzjxo0cjsp+uaYYvHz5cvXq1Ut+fukX/FK2nahdu7ZCQ0NVtmxZffbZZ+rfv7/VY8aOHavhw4eblyMjI1W6dGkFBQUpICDAMXfARkajUQaDQUFBQbxQ2qBggQLy8vZWUFCQ8vvnc3Y4uAP5DHdCPsOdkM9wJ+Qz3A05DXdCPsOd2JLPGdUtXUGuKAZv3bpVhw8f1qeffmr3sYUKFVLlypV19OjRNPfx9fWVr69vqvUeHh5OebEyGAxOu3ZuY/jvMUp+zOB6yGe4E/IZ7oR8hjshn+FuyGm4E/IZ7iSjfM4Nee76EUp67733VL9+fdWpU8fuY6OionTs2DGVKFEiGyIDAAAAAAAAgNzBqcXgqKgoHThwQAcOHJAknThxQgcOHNDp06fN+0RGRmrNmjV65plnrJ6jdevWWrhwoXl5xIgR2rJli06ePKnt27erS5cu8vT0VI8ePbL1vsA5DAaDs0MAAAAAAAAAcgWntonYu3evWrZsaV5O7tvbp08frVy5UpL0ySefyGQypVnMPXbsmK5cuWJePnv2rHr06KGrV68qKChITZs21c6dOxUUFJR9dwTOZzI5OwIAAAAAAADApTm1GNyiRQuZMijiPfvss3r22WfT3H7y5EmL5U8++cQRoQEAAAAAAACAW8kVPYOBtCS3iWBgMAAAAAAAAJA+isEAAAAAAAAAkAdQDEauljx/XEbtRgAAAAAAAIC8jmIwAAAAAAAAAOQBFIORu5l7BjMyGAAAAAAAAEgPxWAAAAAAAAAAyAMoBiNXMyQ3DQYAAAAAAACQLorBAAAAAAAAAJAHUAyGe6BlMAAAAAAAAJAuisEAAAAAAAAAkAdQDEaultwy2GRiaDAAAAAAAACQHorBAAAAAAAAAJAHUAxGrmb4b2gwI4MBAAAAAACA9FEMBgAAAAAAAIA8gGIwcjfzyGAnxwEAAAAAAAC4OIrBAAAAAAAAAJAHUAxGrvbfwGAAAAAAAAAAGaAYDAAAAAAAAAB5AMVguAeaBgMAAAAAAADpohgMAAAAAAAAAHkAxWDkaob/mgabGBkMAAAAAAAApItiMAAAAAAAAADkARSDkavdHhns5EAAAAAAAAAAF0cxGAAAAAAAAADyAIrByN1uDQymZzAAAAAAAACQAYrBAAAAAAAAAJAHOLUY/Ouvv6pjx44KCQmRwWDQunXrLLb37dtXBoPB4l/79u0zPO+iRYtUrlw5+fn5KTQ0VLt3786mewBnS+4ZDAAAAAAAACB9Ti0GR0dHq06dOlq0aFGa+7Rv314XLlww//v444/TPeenn36q4cOHa+LEidq3b5/q1Kmjdu3aKSwszNHhAwAAAAAAAECu4eXMi3fo0EEdOnRIdx9fX18VL17c5nPOnTtXAwYMUL9+/SRJS5cu1Xfffafly5drzJgxWYoXLoyewQAAAAAAAEC6nFoMtsXmzZsVHByswoULq1WrVpo2bZruuusuq/vevHlTv//+u8aOHWte5+HhoQceeEA7duxI8xrx8fGKj483L0dGRkqSjEajjEajg+6JbYxGo0wmU45fN7dKnjguKSnnnytkjHyGOyGf4U7IZ7gT8hnuhpyGOyGf4U5syefckOsuXQxu3769Hn30UZUvX17Hjh3TuHHj1KFDB+3YsUOenp6p9r9y5YqSkpJUrFgxi/XFihXTP//8k+Z1Zs6cqcmTJ6daf/nyZcXFxWX9jtjBaDQqIiJCJpNJHh7M75eRqKgoJSYk6OqVKzL5JDk7HNyBfIY7IZ/hTshnuBPyGe6GnIY7IZ/hTmzJ5xs3buRwVPZz6WJw9+7dzbdr1aql2rVr6+6779bmzZvVunVrh11n7NixGj58uHk5MjJSpUuXVlBQkAICAhx2HVsYjUYZDAYFBQXxQmkDf/+C8vL2VpG77lJwcFFnh4M7kM9wJ+Qz3An5DHdCPsPdkNNwJ+Qz3Ikt+ezn55fDUdnPpYvBd6pQoYKKFi2qo0ePWi0GFy1aVJ6enrp06ZLF+kuXLqXbd9jX11e+vr6p1nt4eDjlxcpgMDjt2rmN4b/HiMfLdZHPcCfkM9wJ+Qx3Qj7D3ZDTcCfkM9xJRvmcG/Lc9SNM4ezZs7p69apKlChhdbuPj4/q16+vTZs2mdcZjUZt2rRJjRo1yqkw4QxMIAcAAAAAAACky6nF4KioKB04cEAHDhyQJJ04cUIHDhzQ6dOnFRUVpZEjR2rnzp06efKkNm3apEceeUQVK1ZUu3btzOdo3bq1Fi5caF4ePny43nnnHa1atUr/+9//9MILLyg6Olr9+vXL6buHHGAwGJwdAgAAAAAAAJArOLVNxN69e9WyZUvzcnLf3j59+mjJkiX6888/tWrVKoWHhyskJERt27bV1KlTLVo6HDt2TFeuXDEvd+vWTZcvX9aECRN08eJF1a1bV+vXr081qRwAAAAAAAAA5CVOLQa3aNFCpnR+3v/jjz9meI6TJ0+mWjd48GANHjw4K6Ehl2BkMAAAAAAAAGCbXNUzGEgLLYMBAAAAAACA9FEMBgAAAAAAAIA8gGIw3EJ67UYAAAAAAAAAUAxGLkfLYAAAAAAAAMA2FIPhFhgZDAAAAAAAAKSPYjByN4YGAwAAAAAAADahGAz3wMBgAAAAAAAAIF0Ug5GrGRgZDAAAAAAAANiEYjAAAAAAAAAA5AEUg5GrMTAYAAAAAAAAsA3FYLgFk4mmwQAAAAAAAEB6KAYDAAAAAAAAQB5AMRhugZHBAAAAAAAAQPooBiNXu3YxXJKUEJ/o3EAAAAAAAAAAF0cxGLnajm/2SpJ++3K3kyMBAAAAAAAAXFumisGJiYnauHGjli1bphs3bkiSzp8/r6ioKIcGB9gqLjrO2SEAAAAAAAAALs3L3gNOnTql9u3b6/Tp04qPj1ebNm3k7++v2bNnKz4+XkuXLs2OOIF0GY30DAYAAAAAAADSY/fI4KFDh+ree+/V9evXlS9fPvP6Ll26aNOmTQ4NDrAZE8gBAAAAAAAA6bJ7ZPDWrVu1fft2+fj4WKwvV66czp0757DAAFtUqFVWxw+eUqX6FZwdCgAAAAAAAODS7B4ZbDQalZSUlGr92bNn5e/v75CgAFs179ZYkhQYFODkSAAAAAAAAADXZncxuG3btpo/f7552WAwKCoqShMnTtSDDz7oyNiADHl4GCRJJnoGAwAAAAAAAOmyu03E66+/rvbt26t69eqKi4tTz549deTIERUtWlQff/xxdsQIpMnD89b3GUwgBwAAAAAAAKTP7mJw6dKl9ccff+jTTz/VH3/8oaioKPXv31+9evWymFAOyAnmYnCS0cmRAAAAAAAAAK7NrmJwQkKCqlatqm+//Va9evVSr169sisuwCYeHhSDAQAAAAAAAFvY1TPY29tbcXFx2RULYLfbbSIoBgMAAAAAAADpsXsCuUGDBmn27NlKTEzMjngAuxj+m0COkcEAAAAAAABA+uzuGbxnzx5t2rRJP/30k2rVqqUCBQpYbF+7dq3DggMy4vFfMdjEBHIAAAAAAABAuuweGVyoUCF17dpV7dq1U0hIiAIDAy3+2ePXX39Vx44dFRISIoPBoHXr1pm3JSQkaPTo0eaCc0hIiJ566imdP38+3XNOmjRJBoPB4l/VqlXtvZvIJZhADgAAAAAAALCN3SODV6xY4bCLR0dHq06dOnr66af16KOPWmyLiYnRvn379Oqrr6pOnTq6fv26hg4dqk6dOmnv3r3pnrdGjRrauHGjednLy+67iVzm4snLzg4BAAAAAAAAcGlOrZJ26NBBHTp0sLotMDBQGzZssFi3cOFCNWzYUKdPn1aZMmXSPK+Xl5eKFy9ucxzx8fGKj483L0dGRkq6NSlZTk9MZjQaZTKZmBDNRoe2/SNJ2rJmux4f0dHJ0eBO5DPcCfkMd0I+w52Qz3A35DTcCfkMd2JLPueGXLe7GFy+fHkZDIY0tx8/fjxLAaUnIiJCBoNBhQoVSne/I0eOKCQkRH5+fmrUqJFmzpyZbvF45syZmjx5cqr1ly9fVlxcXFbDtovRaFRERIRMJpM8POzu4pHnxMRGKzEhQZIUFhbm5GhwJ/IZ7oR8hjshn+FOyGe4G3Ia7oR8hjuxJZ9v3LiRw1HZz+5i8LBhwyyWExIStH//fq1fv14jR450VFypxMXFafTo0erRo4cCAgLS3C80NFQrV65UlSpVdOHCBU2ePFnNmjXToUOH5O/vb/WYsWPHavjw4eblyMhIlS5dWkFBQeleKzsYjUYZDAYFBQXxQmmDijXv1nbv3yVJwcHBTo4GdyKf4U7IZ7gT8hnuhHyGuyGn4U7IZ7gTW/LZz88vh6Oyn93F4KFDh1pdv2jRogx7+WZWQkKCnnjiCZlMJi1ZsiTdfVO2nahdu7ZCQ0NVtmxZffbZZ+rfv7/VY3x9feXr65tqvYeHh1NerAwGg9OundtUrFfefJvHyzWRz3An5DPcCfkMd0I+w92Q03An5DPcSUb5nBvy3GERdujQQV988YWjTmeWXAg+deqUNmzYYPdI3UKFCqly5co6evSow2OD8wUUKShJCn2wnpMjAQAAAAAAAFybw4rBn3/+uYoUKeKo00m6XQg+cuSINm7cqLvuusvuc0RFRenYsWMqUaKEQ2ODa/D09pQk3Yy96eRIAAAAAAAAANdmd5uIe+65x2ICOZPJpIsXL+ry5ctavHixXeeKioqyGLF74sQJHThwQEWKFFGJEiX02GOPad++ffr222+VlJSkixcvSpKKFCkiHx8fSVLr1q3VpUsXDR48WJI0YsQIdezYUWXLltX58+c1ceJEeXp6qkePHvbeVeQCycPv9/9ySJFXbyjgLut9oQEAAAAAAIC8zu5i8COPPGJRDPbw8FBQUJBatGihqlWr2nWuvXv3qmXLlubl5Enc+vTpo0mTJunrr7+WJNWtW9fiuF9++UUtWrSQJB07dkxXrlwxbzt79qx69Oihq1evKigoSE2bNtXOnTsVFBRkV2zIHVLm4pnD51WjcRUnRgMAAAAAAAC4LruLwZMmTXLYxVu0aCGTyZTm9vS2JTt58qTF8ieffJLVsJBLGZOMzg4BAAAAAAAAcFl29wz29PRUWFhYqvVXr16Vp6enQ4ICMmPLZ9udHQIAAAAAAADgsuwuBqc1Wjc+Pt7cxxdwhr93/uvsEAAAAAAAAACXZXObiLfeekvSrR6t7777rgoWLGjelpSUpF9//dXunsEAAAAAAAAAgJxhczF43rx5km6NDF66dKlFSwgfHx+VK1dOS5cudXyEAAAAAAAAAIAss7kYfOLECUlSy5YttXbtWhUuXDjbggIAAAAAAAAAOJbNxeBkv/zyS3bEAQAAAAAAAADIRnYXgyXp7Nmz+vrrr3X69GndvHnTYtvcuXMdEhhgq7tKFNbVC9edHQYAAAAAAADg0uwuBm/atEmdOnVShQoV9M8//6hmzZo6efKkTCaT6tWrlx0xAuka88EQjXxgiiTJaDTKw8PDyREBAAAAAAAArsfuqtnYsWM1YsQIHTx4UH5+fvriiy905swZNW/eXI8//nh2xAikq0BgAfPt+Nib6ewJAAAAAAAA5F12F4P/97//6amnnpIkeXl5KTY2VgULFtSUKVM0e/ZshwcI2OLuOuUkSfEx8c4NBAAAAAAAAHBRdheDCxQoYO4TXKJECR07dsy87cqVK46LDLBDpXoVJEnxMYwMBgAAAAAAAKyxu2fwfffdp23btqlatWp68MEH9fLLL+vgwYNau3at7rvvvuyIEciQXwFfSVLMjVgnRwIAAAAAAAC4JrtHBs+dO1ehoaGSpMmTJ6t169b69NNPVa5cOb333nsODxCwxfljFyVJc/otcnIkAAAAAAAAgGuya2RwUlKSzp49q9q1a0u61TJi6dKl2RIYYI8/t/zt7BAAAAAAAAAAl2bXyGBPT0+1bdtW169fz654gEx59bPh5tvxsUwiBwAAAAAAANzJ7jYRNWvW1PHjx7MjFiDTCgUHmm9//sa3TowEAAAAAAAAcE12F4OnTZumESNG6Ntvv9WFCxcUGRlp8Q9wBoPBYL7921e7nRgJAAAAAAAA4Jrs6hksSQ8++KAkqVOnThYFOJPJJIPBoKSkJMdFBwAAAAAAAABwCLuLwb/88kt2xAE41PljFxVyd3FnhwEAAAAAAAC4DLuLwc2bN8+OOIAse+ylh/X5vFv9gtcv/1lPT+/p5IgAAAAAAAAA12F3z2BJ2rp1q3r37q3GjRvr3LlzkqQPPvhA27Ztc2hwgD1a9Wxmvm0yOTEQAAAAAAAAwAXZXQz+4osv1K5dO+XLl0/79u1TfHy8JCkiIkIzZsxweIBAZoRfCnd2CAAAAAAAAIBLsbsYPG3aNC1dulTvvPOOvL29zeubNGmiffv2OTQ4ILOO/XnK2SEAAAAAAAAALsXuYvDhw4d1//33p1ofGBio8PBwR8QEAAAAAAAAAHAwu4vBxYsX19GjR1Ot37ZtmypUqOCQoIDMYtI4AAAAAAAAwDq7i8EDBgzQ0KFDtWvXLhkMBp0/f16rV6/WiBEj9MILL2RHjIDNSlQINt82Go1OjAQAAAAAAABwLXYXg8eMGaOePXuqdevWioqK0v33369nnnlGzz33nIYMGWLXuX799Vd17NhRISEhMhgMWrduncV2k8mkCRMmqESJEsqXL58eeOABHTlyJMPzLlq0SOXKlZOfn59CQ0O1e/duu+JC7lWyYgnz7ajwaCdGAgAAAAAAALgWu4vBBoNBr7zyiq5du6ZDhw5p586dunz5sqZOnWr3xaOjo1WnTh0tWrTI6vbXXntNb731lpYuXapdu3apQIECateuneLi4tI856effqrhw4dr4sSJ2rdvn+rUqaN27dopLCzM7viQO4XcXUyStO2LXU6OBAAAAAAAAHAddheDk/n4+Mjf318lSpRQwYIFM3WODh06aNq0aerSpUuqbSaTSfPnz9f48eP1yCOPqHbt2nr//fd1/vz5VCOIU5o7d64GDBigfv36qXr16lq6dKny58+v5cuXZypG5D5R4TGSpG/f3uDkSAAAAAAAAADX4WXvAYmJiZo8ebLeeustRUVFSZIKFiyoIUOGaOLEifL29nZIYCdOnNDFixf1wAMPmNcFBgYqNDRUO3bsUPfu3VMdc/PmTf3+++8aO3aseZ2Hh4ceeOAB7dixI81rxcfHKz4+3rwcGRkp6VbP2ZzuO2s0GmUymeh3mwWvfDJMo9vcGqnO4+hc5DPcCfkMd0I+w52Qz3A35DTcCfkMd2JLPueGXLe7GDxkyBCtXbtWr732mho1aiRJ2rFjhyZNmqSrV69qyZIlDgns4sWLkqRixYpZrC9WrJh5252uXLmipKQkq8f8888/aV5r5syZmjx5cqr1ly9fTrclRXYwGo2KiIiQyWSSh0emB27neYkJCZJEexAnI5/hTshnuBPyGe6EfIa7IafhTshnuBNb8vnGjRs5HJX97C4Gf/TRR/rkk0/UoUMH87ratWurdOnS6tGjh8OKwTlp7NixGj58uHk5MjJSpUuXVlBQkAICAnI0FqPRKIPBoKCgIF4os6DKvRUVdvqqgoODnR1KnkY+w52Qz3An5DPcCfkMd0NOw52Qz3AntuSzn59fDkdlP7uLwb6+vipXrlyq9eXLl5ePj48jYpIkFS9eXJJ06dIllShRwrz+0qVLqlu3rtVjihYtKk9PT126dMli/aVLl8zns8bX11e+vr6p1nt4eDjlxcpgMDjt2u7C28dbCTcTeAxdAPkMd0I+w52Qz3An5DPcDTkNd0I+w51klM+5Ic/tjnDw4MGaOnWqRY/d+Ph4TZ8+XYMHD3ZYYOXLl1fx4sW1adMm87rIyEjt2rXL3J7iTj4+Pqpfv77FMUajUZs2bUrzGLgnb19vJd5MdHYYAAAAAAAAgMuwe2Tw/v37tWnTJpUqVUp16tSRJP3xxx+6efOmWrdurUcffdS879q1a9M9V1RUlI4ePWpePnHihA4cOKAiRYqoTJkyGjZsmKZNm6ZKlSqpfPnyevXVVxUSEqLOnTubj2ndurW6dOliLkQPHz5cffr00b333quGDRtq/vz5io6OVr9+/ey9q8jFvH29lJiQJKPRmCu+lQEAAAAAAACym93F4EKFCqlr164W60qXLp2pi+/du1ctW7Y0Lyf37e3Tp49WrlypUaNGKTo6Ws8++6zCw8PVtGlTrV+/3qL/xrFjx3TlyhXzcrdu3XT58mVNmDBBFy9eVN26dbV+/fpUk8rBvV05f02SNDh0rGb/9Kr8Cxd0ckQAAAAAAACAcxlMJpPJ2UG4msjISAUGBioiIsIpE8iFhYUpODiYEa1ZMLDBaPPtftN6qEG7us4LJg8jn+FOyGe4E/IZ7oR8hrshp+FOyGe4E1vy2Zk1RVvxfyLcXoHA/M4OAQAAAAAAAHA6u4vBV69e1aBBg1S9enUVLVpURYoUsfgHuIIZ348z3zYmGZ0YCQAAAAAAAOAa7O4Z/OSTT+ro0aPq37+/ihUrJoPBkB1xAVlSKChQfSZ306qJn1IMBgAAAAAAAJSJYvDWrVu1bds21alTJzviARzGw/PWwPekxCQnRwIAAAAAAAA4n91tIqpWrarY2NjsiAVwqORR60yRCAAAAAAAAGSiGLx48WK98sor2rJli65evarIyEiLf4DLoRoMAAAAAAAA2N8molChQoqMjFSrVq0s1ptMJhkMBiUl8ZN8uIbkdtYmisEAAAAAAACA/cXgXr16ydvbWx999BETyMGlkZsAAAAAAADAbXYXgw8dOqT9+/erSpUq2REP4Dj0DAYAAAAAAADM7O4ZfO+99+rMmTPZEQsAAAAAAAAAIJvYPTJ4yJAhGjp0qEaOHKlatWrJ29vbYnvt2rUdFhyQFfQMBgAAAAAAAG6zuxjcrVs3SdLTTz9tXmcwGJhADq6LYjAAAAAAAABgfzH4xIkT2REH4HAGegYDAAAAAAAAZnYXg8uWLZsdcQAOd7sYTDUYAAAAAAAAsHsCOUn64IMP1KRJE4WEhOjUqVOSpPnz5+urr75yaHBAlhicHQAAAAAAAADgOuwuBi9ZskTDhw/Xgw8+qPDwcHOP4EKFCmn+/PmOjg/INMPtGeScGwgAAAAAAADgAuwuBi9YsEDvvPOOXnnlFXl6eprX33vvvTp48KBDgwMcgVowAAAAAAAAkIli8IkTJ3TPPfekWu/r66vo6GiHBAU4gnlkMAAAAAAAAAD7i8Hly5fXgQMHUq1fv369qlWr5oiYAIe43SWCocEAAAAAAACAl607TpkyRSNGjNDw4cM1aNAgxcXFyWQyaffu3fr44481c+ZMvfvuu9kZK2Cf/6rBFIMBAAAAAAAAO4rBkydP1vPPP69nnnlG+fLl0/jx4xUTE6OePXsqJCREb775prp3756dsQJ2oU0EAAAAAAAAcJvNxeCUoyt79eqlXr16KSYmRlFRUQoODs6W4ACHYGAwAAAAAAAAYHsxWEo90jJ//vzKnz+/QwMCHI02EQAAAAAAAICdxeDKlStn+NP7a9euZSkgwFGYQA4AAAAAAAC4za5i8OTJkxUYGJhdsQCOZZ5AzslxAAAAAAAAAC7ArmJw9+7d6Q+MXIMJ5AAAAAAAAIDbPGzd0VmFtXLlyslgMKT6N2jQIKv7r1y5MtW+fn5+ORw1XAG1YAAAAAAAAOA2m0cGO6vv6p49e5SUlGRePnTokNq0aaPHH388zWMCAgJ0+PBh8zIjRPM4+kQAAAAAAAAAtheDjUZjdsaRpqCgIIvlWbNm6e6771bz5s3TPMZgMKh48eLZHRpcnMHcM5hiMAAAAAAAAGBXz2Bnu3nzpj788EMNHz483dG+UVFRKlu2rIxGo+rVq6cZM2aoRo0aae4fHx+v+Ph483JkZKSkWwXwnC6CG41GmUwmpxXf3UlyEdgZzyNuIZ/hTshnuBPyGe6EfIa7IafhTshnuBNb8jk35HquKgavW7dO4eHh6tu3b5r7VKlSRcuXL1ft2rUVERGh119/XY0bN9Zff/2lUqVKWT1m5syZmjx5cqr1ly9fVlxcnKPCt4nRaFRERIRMJpM8PGxu6QwrrodfV2JCgiLCIxQWFubscPIk8hnuhHyGOyGf4U7IZ7gbchruhHyGO7Eln2/cuJHDUdkvVxWD33vvPXXo0EEhISFp7tOoUSM1atTIvNy4cWNVq1ZNy5Yt09SpU60eM3bsWA0fPty8HBkZqdKlSysoKEgBAQGOuwM2MBqNMhgMCgoK4oUyiyKKRMnL21sBgYEKDg52djh5EvkMd0I+w52Qz3An5DPcDTkNd0I+w53Yks9+fn45HJX9ck0x+NSpU9q4caPWrl1r13He3t665557dPTo0TT38fX1la+vb6r1Hh4eTnmxMhgMTru2O0l+/AwpbiPnkc9wJ+Qz3An5DHdCPsPdkNNwJ+Qz3ElG+Zwb8tz1I/zPihUrFBwcrIceesiu45KSknTw4EGVKFEimyKDq7o9gZyTAwEAAAAAAABcQK4oBhuNRq1YsUJ9+vSRl5flYOannnpKY8eONS9PmTJFP/30k44fP659+/apd+/eOnXqlJ555pmcDhsuwkQ1GAAAAAAAAMgdbSI2btyo06dP6+mnn0617fTp0xZDsK9fv64BAwbo4sWLKly4sOrXr6/t27erevXqORkyXIHhv/9SDAYAAAAAAAByRzG4bdu2aY7u3Lx5s8XyvHnzNG/evByICq4uuU0EAAAAAAAAgFzSJgLIDIrBAAAAAAAAwG0Ug+H26BIBAAAAAAAAUAyGG0seGMwEcgAAAAAAAADFYLiz/6rBFIMBAAAAAAAAisFwY+aewdSCAQAAAAAAAIrBcF/MHwcAAAAAAADcRjEYbo82EQAAAAAAAADFYLgzegYDAAAAAAAAZhSD4bY8PJKLwU4OBAAAAAAAAHABFIPhtpInkDMZjU6OBAAAAAAAAHA+isFwWx6et9LbZGRoMAAAAAAAAEAxGG4reWSwkWIwAAAAAAAAQDEY7svgQZsIAAAAAAAAIBnFYLgtJpADAAAAAAAAbqMYDLdl8LiV3sYkRgYDAAAAAAAAFIPhtsxtIhgaDAAAAAAAAFAMhvtKbhPByGAAAAAAAACAYjDcWHKbCEYGAwAAAAAAABSD4cYYGQwAAAAAAADcRjEYbut2z2AnBwIAAAAAAAC4AIrBcFse/7WJYGQwAAAAAAAAQDEYbuz2yGCGBgMAAAAAAAAUg+G2DIb/isFGisEAAAAAAAAAxWC4LQ/P/9pEGGkTAQAAAAAAAFAMhtv6b2AwI4MBAAAAAAAAUQyGG2NkMAAAAAAAAHCbSxeDJ02aJIPBYPGvatWq6R6zZs0aVa1aVX5+fqpVq5a+//77HIoWroaewQCQtyUlJWnO04t04fglZ4cCAAAAAC7BpYvBklSjRg1duHDB/G/btm1p7rt9+3b16NFD/fv31/79+9W5c2d17txZhw4dysGI4SoMHreKwUaKwQCQ50RHRGvIfeN04uBpTe02l1+JAAAAAIByQTHYy8tLxYsXN/8rWrRomvu++eabat++vUaOHKlq1app6tSpqlevnhYuXJiDEcNVeHjcSm8TBQAAyHNGPjDFYnlw6FgnRQIAAAAArsPL2QFk5MiRIwoJCZGfn58aNWqkmTNnqkyZMlb33bFjh4YPH26xrl27dlq3bl2614iPj1d8fLx5OTIyUtKtXrM5PZLIaDTKZDIxgsmBjEk5/zziFvIZ7oR8dm0JNxP1z85/VbNZNX29+Eer+wxsMFoLd83M4chcE/kMd0I+w92Q03An5DPciS35nBty3aWLwaGhoVq5cqWqVKmiCxcuaPLkyWrWrJkOHTokf3//VPtfvHhRxYoVs1hXrFgxXbx4Md3rzJw5U5MnT061/vLly4qLi8vanbCT0WhURESETCaTeWQrMi8pKVFRUdEKCwtzdih5EvkMd0I+u4bEm4mKjYqXj5+3pj86P919/Yv668aVGxbrxneeqRff7p+NEeYO5DPcCfkMd0NOw52Qz3AntuTzjRs3rK53JS5dDO7QoYP5du3atRUaGqqyZcvqs88+U//+jvsgN3bsWIsRxZGRkSpdurSCgoIUEBDgsOvYwmg0ymAwKCgoiBdKB/Dx8VE+v3wKDg52dih5EvkMd0I+O5/RaNTkR1/X1QvXJUle3t7p7v/Kh8NUKDhQJpNJQ+4bJ0kKvxDJ3wSRz3Av5DPcDTkNd0I+w53Yks9+fn45HJX9XLoYfKdChQqpcuXKOnr0qNXtxYsX16VLljOGX7p0ScWLF0/3vL6+vvL19U213sPDwykvVgaDwWnXdjcenh58A+lk5DPcCfnsXPb0/X1q4hMqUrywefmeljW1/5dbE8ry/N1CPsOdkM9wN+Q03An5DHeSUT7nhjzPVcXgqKgoHTt2TE8++aTV7Y0aNdKmTZs0bNgw87oNGzaoUaNGORQhXI7BIJPR5OwoAABZNKLVJKvr8xX00xu/pG71dKd2T7cyF4MBAAAAIK9y6WLwiBEj1LFjR5UtW1bnz5/XxIkT5enpqR49ekiSnnrqKZUsWVIzZ96aDGbo0KFq3ry53njjDT300EP65JNPtHfvXr399tvOvBtwIoPB2REAALLqxvUoxdyIlSSVr1VGz772pL5dtkHePl5q0a2xTecoU7VkdoYIAAAAALmCSxeDz549qx49eujq1asKCgpS06ZNtXPnTgUFBUmSTp8+bTH8unHjxvroo480fvx4jRs3TpUqVdK6detUs2ZNZ90FOJmBajAA5FpxMfEa0XKi/IsUNK8buXyQJKnXK13tPl9wmaLy8vZ0WHwAAAAAkNu4dDH4k08+SXf75s2bU617/PHH9fjjj2dTRMiNTCbaRABAbmMymTS8+QRJUsSVWzPyjls9NEvnNBgMOn/skkwmE18WAgAAAMiTXLoYDGSVwWCgGAwAucQ3S3/SD+9t0t11yql6o8qptpeqHJKl8186dVmStPv7fQp9qH6WzgUAAAAAuZHrT3EHAADcXtjpy/rhvU2SpGN/nNQ3S3+y2F65XgWHXevogZMOOxcAAAAA5CaMDIbbY2AwALi+SV1ft7q+zZPN1eXFBx17Mf4uAAAAAMijGBkM90ZLSAAwc8W2OTeuR+nU32d0d51ykqRnZvay2N7ssfscfk1XfBwAAAAAICcwMhjujw/9ACCTyaQXG41Tk84N1X1MF6fEYDQatXb+d/r5421p7lOnZQ3z7fseqq+iIUVyIjQAAAAAyBMoBsOtMVs8ANxiMpmUlGTUr1/szPZicMyNWJ07ckHznltm97Genp7m2w8++4AjwzJjZDAAAADymqjwaBUsVMDZYcAFUAyGW6MYDAC3xEbFZfs1Fr24XH/tOGzTvneFFNbV89fT3SewqL8jwkqNWjCyaP3yn/X1kh8lSfO3TZOPr7eTIwIAAEjbvk0H9e6YD/Xwc2314DOts/16SYlJio6M0dKXV+nkoTOSpMV7Zmf7dWEbisFwe4wAAwDp+sVwm/f9bd1uVWlY0aJFw9o3v9PGD3/V3C1TdOXcNf255W+LN5JHD5xIsxBcp3kNPff6Uzpz+JzuCimi/P75JEl/7zishS8uT7X/pLUjdfX8dXn7ZE+B7cRfp7PlvHB/yR+kUhrWdLxKVS6hcauHOScoAACADCS/f/l22U/m9/CxUbHyK+DnsEF04Zcj5O3rrdFtpshoTF2H+fS1r9Rt1CMOuRayhmIw3JrBQMtgAJBufTtviwsnLmn19C8kSQ3b36NCwYGq2ayqNn74qyRpePMJ5n2rN6qscjVK6+vFP2r9ip9TnevOb/9LVylpsZzW63Nw6aIKLl3Upngz4+KJsGw7N9yLyWSSyWTSwa3/07tjVqf5/9HZfy9oYIPR5uVnZvVWvda1cipMAAAAq0wmky6fuWKxbmCD0eozuZtWTfxUnV5op/ZPt8r0+ZcOX6k/t/5PI94bqNf7L05335pNq2b6OnAsisEAAOQBCTcT090edvqyNnzwqzw8PMzrdq/fL0n66f3NVo95re/CNM836M2n7Q8ScKLwyxEa9+AMm/Z987dp8vbx1rWL1zW+46xU298d86HGrR6qUpVDUm27dOqy/v39uJo9GprlmAEAANKz7cvd+njm2lTrV038VJL09ZIfdervs3p2zpN2jRA+euCE8hX0059b/ydJGRaCJalG4yo2nx/Zi2Iw3B9DgwEg1WjY797eoKREo8rVLK3SVUtqUtfXHXKdXq90VaNO91oUlQFXNzh0jNWfM95p1o/jFVDkdi/rIsULa+GumRocOjbVvr9v+NNqMXjyY7f+Xwss6q/a91c3rz/+56lUH6Tmbpkiv/y+Nt8PAACAlKwVgu/0x5a/NKjhGNVvU0f9Z/RMd99T/zurQ1v/p+/e2WhzDHM2TlC+/9rEwTVQDIZ7MxjoGQwAkhJTjAw+f+yiXW/g7NGkc0Ob9zUZjdkSQ0a8vD2dcl24ppTtHSSp96uPKfShevL0tC1PPDw8tHjPbF0Pi1BC3E39vuFPfbP0J/248hc9Mqi9xb5/bPnLfHv9ip+19OVV6Z47ZVuWwW89reqNGFEDAACyx+8b/pCPn7eenPB4mvvMfmqBXedctHuWw3oSw3EoBsOt8aIDALekbBMRefVGtlyjcacGdu1/53d1vcc/5sBo0paYYFv/ZLi/OwvBWZnlunBwoCSpQGD+NPdZNuJ98+3kmbVtlTzZIjNxAwAAW0RHxqS7fcR7A1WuZmnFRsVpZOvJkqQd3+xNVQy+filcV85d0/av9th87RIViumFeX2pybgoisEAAOQBN2Nvmm+/Nehdh59/4Px+qtkk85NCjHhvoMrXKuPAiNLmX7hAjlwHrm3tm99ZLDuqyFrr/ur6ZPY68/J74z5S/Ta19faoD9I97vk3+qh6o8pKuJmo+Jh4mYwmJSUZNeERy7j+/PVvi/YSAAAA1iQXeJM9NOABPfRsm1T7FQjIrzd/m6ahTcZLkmb3WaDRq4aYt7/y8Ey7rtuwwz3qO6V7JiJGTqEYDLdmMNAyGO4lNjpO+Qr4OTsM5DLbv96TbW0hknl62d96IWUbnwq1yzoynHTduB6dY9eC69r44a/m24t2p54ELrMKFro9Mnjjh7/q9w1/6PcNf1jd984exJLk5e1l8Tq/eM9sJSUlach94yRJS19epSaPNFSv8V0dFjMAAHAvEVciLZYz+tLb28fbfPvU32fNt394b5PN1+w3tbvqtaltc6stOA+zu8C98ZMEuJH3xq7Wyy0mmn+eExcTr/jYeCdHBVd27I+T+nvHYX049fNsv1bJisXtPiane7pnNCEG8o4Th06bb9/f9T6H/oQx5YepO0cfS7cKwIv3zNbiPbNTFYLT4unpqfnbppmXf/tqN3MiAACANI3tMN18e9LakTYdk3K/sNOXJUnfLP0pw+OGv/O8nhjRiUJwLsLIYLg9PizBXfy+8U9J0ofTPteH01IX94qXC9LFk5c1etVgla1eOqfDg4sxmUx645klmTp23OqhOnf0olZN/NTmYwLusq2olVKxskGSpPpt6th9bGbUb1NH7437SJJ0PSzC3OMVec+cfovMt7uP6ZJj183KJCo+vt5avGe2uc/x+5M+U5/J3RwZHgAAcEPBpYvatN9dIYXNtyd1fT3D0cRzt0yRX35fSVLFuuUzHyByHCODASAXSDkDfVounrz17e3sPguzOxzkApdOXc7UcdO/G6dSlUMU+mC9NPcZMLu3xXLlehUyda3i5YI15avR6js15wtaH0z6LMevCdew58cD2X6NNzZb9uh75eNhWrxntkNHIO/6fp/DzgUAANxHbFSs+fad70nS4+npaTEHSFJi2pMuz9k00VwIRu7DyGC4P0YGI5e7cT3KYgb6lJJHmSWPFEs2sMFoZpzP4xLiE+zaf8pXo1U0pIjFuuQcujO/7mlVy2K5XM3MT/x25zVzyj97jjrlunC+FeM/Nt+e/dOr2XKNfAX8tHjPbJlMJofPot20S6i2fblL0q2/D/6FCzr0/HlRXEy8Lhy/pIKFCsjL21OFixVydkgAAGTayy0nmW/bW7B9ekZPDW8+QZI0pNG4NPcrEJA/zW1wfRSD4dYMBgO1YOR6o9tOtbo+ZbF38Z7ZWr/iF329eL153cAGo9W+Xyt1Gtgu22OE6zCZTPpo+lod2X/cpv2bP95Y3UY9ku4+o1YOVkJ8girVq2C19U69NrUzFasz9BjTRR/P+tLZYcBFZHch1dGFYMnyQ93vP/2hFt2aOPwaecmnr32lLWu2W6zjy1QAgLuw971IRsXjeq1rqe/U7lkJCS6ANhFwa8wfh9zswvFLWjnhE6vbpn49JtW69v1aavwnL1msW7/iZx367Z9siQ+u6eDW/+m3r3Yr7PSVDPcd8d7ADAvBklSuRmlV+q8VRPIbyjd+maQmjzSUJBUt6ZzRvZnRpEtD8+3rl8KdFwicImVrhXGrhzoxkszz8Lz99v2z1792YiS5X+S1G6kKwQAAuIvp347N1HGPv9wpzW3PzOotL2/GleZ2FIMBwEVN7TZXu3/Yb7Fuyle32j/cVaKw1WNC7i6uORsnWKzbsGpzdoUIF3Tl3DWb9y1bo1Smr5OvYD71Gt9VC3bMUH7/fJk+T07z8Lj91ueVh2cqOiLaidEgp6WcFLFU5RAnRpJ5KYvByJqlL6+yuj4pKe0eiQAAuLK/th82385s26P7OtZPtW7Oxgn8csaN8G4Sbs1gMMgk+kTAfdjSX7VAYAG9+ds08/KR/SeyMyS4mNgbsRnvJGnMBy/K09Mzy9fz9Mr6OXLakxMeN98e+cAUJ0YCZylePtjZIWRawUKWPfoObv2fkyLJ3U7+dUYnD52xum1mrzcVFc4XRQCA3GfR0OVZPke+An4qU62keXnhrpkqEFggy+eF66AYDPdGnwjkUtY+hA5682mbj/f28VbvVx9zZEjIJb57Z2OG+7Tv10plqpbMcD935VeAmY/zoujIGPPtO1vq5CY1m1a1WP7+3Yz/n0dq6bXSOX/skka1maJNq7dq4ZD3tOjFrH+wBgAgu6Wc26PH2EezdK4x77+oVz8droW7Zlr8sg7ugWcUbs/aZEeAKzOZTBrVxnK04pR1o1SjcRW7ztO4UwPz7YENRisxIdEh8cF1LRj8rk37tejeOJsjcW1Bpe6yWI6Nsm00NXK3ka0nm2/n5g81wWWCLJYvHL/kpEhyr7cGvpNmT/6Uvpj/rf7e+a/+2nE4w30BAHC2j6avNd9u9mhols9XokKxXP2eCWnjWYX7oxaMXOTYHyc1qGHqyeGKlrzLyt4ZS/lT6LXzv8t0XHB9iQmJ+t+uIzbt6+Pnk83RuLY7e8W+3HKScwKBw105d1Xnj11Md5/c3CIiWcpWJ7mxVYszRVyJ1D97jtp9nNFozIZoAABwnN++2u3sEJBLuHQxeObMmWrQoIH8/f0VHByszp076/Dh9L+ZX7lypQwGg8U/Pz+/HIoYroYuEcht3nhmicVyv2k9stSo/9VPh5tvb/6MGdPd2d87/k1zW5V779asH8dr4Px+atm9qfzy0yZh0e5Zzg4B2WBC59c0rfu8dPfJzS0ikqVsFWHgzY5d4mPiM3Xc4NCx2rR6q4OjAQDAMVJ+aTnx8xFOjAS5gZezA0jPli1bNGjQIDVo0ECJiYkaN26c2rZtq7///lsFCqTdvDogIMCiaMyb5LyNNhHILY4eSD3RW4N2dbN0ToPBoEYd79WOb/ZKksJOX071E2PkTgk3EzS0yXi17tlMXV96WEf3WeZP2eql9PK7L8jL+/af+ppNqqpmk6p3nipPMhgM8ivgq7jozBWG4HquXwq3uJ1yBu3IqzfMt93h5475/fOZbyfEJzgxktzlxMFTmvP0Yot1PcY+qgbt68o3n49MJpMGh45N8/gv5n+rpMQk3dexvgKK+Gd3uAAA2Czl369iZfm8h/S59Lvh9evXq2/fvqpRo4bq1KmjlStX6vTp0/r999/TPc5gMKh48eLmf8WKFcuhiOFq+CIAuYXJZNLcAUvNy027hGZpRHBKPcfdnjxgUtfXHXJOON+cfoskSZs+ujVSbePqX83b+kzuptGrhlgUgpHaq5+9bL7NBFG5y9a1uzSwwWj9tGqzPpn1pUwmk9Yv/8W8/WacZYF0TPtpOR1itkrZGqJB+3ucGEnucmch+KmJT6jZo6Hyy+8rg8EgDw8PLd4zW4v3zJaHh/X3kOsW/qAx7abpwolLSkxItPgSAgAAZwg7fdl8u3K9Ck6MBLlFrvqUGBERIUkqUqRIuvtFRUWpbNmyMhqNqlevnmbMmKEaNWqkuX98fLzi42+PDIqMjJR0a5h9TvcHMxqNMplM9CVzIB5P5yGfbXfnSKTuYzo77HEz3PGBlucjc1wtn8/+e8F8Oy7WcnRrg/Z1XSZOVxZY9PbIvr92HM5Tj5mr5bO9Pp55a4KUdQt/kCT9s/uIws5cNW9PSkqS0WjUjyt+0TdLfzKvf2RQ+1x7n9Oy/es96vlK1mYMz+1syWdr2xo+eE+ax7y1Y4Yk6c8tf+vtUR+k2j71ibnm2/2m9VCt+6vJx9fb3tABq3L7azSQEvmc/VIO+HlxyQAe62yU2fccribXFIONRqOGDRumJk2aqGbNmmnuV6VKFS1fvly1a9dWRESEXn/9dTVu3Fh//fWXSpUqZfWYmTNnavLkyanWX758WXFxcQ67D7YwGo2KiIiQyWRyi58xOlt8/E15xXoqLCzM2aHkSeSzbYxJRiUm3B7F1nd2d4fnbMrzT3p8jgYu6uPQ8+cFrpbPKZ/TFxtZfpnAa57tUj6Oeelxc7V8tkfU9WiL502Szh+3nDTu1NHTSvJM0JcLLCfOrNO+mts8z22fuV/fL9kkSTq46y8VK593fxJqSz7/+O5mi7wZ98VQm3KheLWimvDNrT7TE9q/ZnWfd0a/L0kaMK+3SlcLsbpPTkhujcYv43K/3PwaDdyJfM5eEVdumP++NX081G3e57gqW/L5xo0bVte7klxTDB40aJAOHTqkbdu2pbtfo0aN1KhRI/Ny48aNVa1aNS1btkxTp061eszYsWM1fPjtSZYiIyNVunRpBQUFKSAgwDF3wEZGo1EGg0FBQUG8UDqAn5+v/Pz8FByc+2cOz43IZ9sMDh0rL+9bo4m6vvSw7mtzr8OvUapySV08ceuNwZXT11S4UBF5++SaPwEuwdXyOTln7lS3RQ1e8+zQqGND7Vm/X5Ly1OPmavmcEZPJpB3f7FVMZKzWLfghzfxP9sErX8i/cEGL/fL753Or59jfP8B8/xJuJLnVfbNXRvkceS1Ku77ab5EPZcqXtvs6S/e9LpPJpH0bD2rF+I9TbV8x6lPz7clfjpS3n48CihS0+zppiY+9KUnyzeeTalvYmSua+tgbKl4uSBdPXlazrvep26hHHHZt5Kzc9hoNpId8zj47v/ldH0773Pz3rffYx50ckfuzJZ/9/PxyOCr75YpKwODBg/Xtt9/q119/TXN0b1q8vb11zz336OjRo2nu4+vrK1/f1DOre3h4OOXFKrlnGS+UDvDfwAgeS+chn9P36WtfWSy37tksW67z6qfDNajhmNvXnbVOXYc/rAIB+bPleu4qN+Rzv+k9XDo+V9NvandzMTjiyg0VDg50ckQ5Jzfkc+S1Gwoo4q/pPefr3JELGR+Qwo3rURbLsze86tL31V6tejTVF/O+lSQtf+Vj3du2rnMDcrL08nlch+kWy1ntyd+gXV01aFdXJpNJ6xb8oA0fbEm1z8Quc8y33/xtmrx9stZC4sq5q5rQ+dbI5ElfjNC5oxf1zugPU+138eStvpFbv9ipPT/s19wtUzJ9TZPJpFUTPtWVc9c0YvnATJ8HmZMbXqMBW5HP2ePDaZ+bb1dtUJHHN4dklM+54Xlw6WKwyWTSkCFD9OWXX2rz5s0qX7683edISkrSwYMH9eCDD2ZDhMgNkn8yB7iahJsJ2rJmu3l5wX/9CbPDnT8Z3fnd79r53a3JOFs80VihD9VT6aol5eHhocirN3R47zFtX7dbz855UvkK5rN2SjjJv78fU+mqJdPcntWCQ172ykMzHDZxI7LmyvlrmvDIreeiaZdQuwvB1nh6ema8Uy5CKwDb3Pk+sMkjDR12boPBoC4vPqguLz6oxIRExUXHa1Sb1MXXoU3Ga+rXY3RXicJ2nf+f3Uf09ZIfdfLQGYv1tk4GGxcTr68X/6ibcTf188e3fl05/duxKlyskE3Hp/wSeWCD0bw+AoALG7ywv7NDQC7i0sXgQYMG6aOPPtJXX30lf39/Xbx4qx9cYGCg8uW7VZx46qmnVLJkSc2cOVOSNGXKFN13332qWLGiwsPDNWfOHJ06dUrPPPOM0+4HnIcPSnBlQ5uMt1hOOTt8Ttr82XZt/my71W0vt5ykBTtmOC023Powv/SllXr4hbby8vbS/OffVtnq9v1KBshtDm39n/n2ti93Zfo83UY+ouZPNHZESMilwsMiLJa7j+2cLdfx8vZSwUJeWrxntpKSkjTkvnEW21/tNMumYqrRaNSmD7eq2n2V9Nagd+2KoWz1Ujr191mLdetX/Gyx/MrDMy2WrcUUGxWrhS8uT7V+5YRP1KF/axUra9mf2mQy6dc1O1SjSRUVLXmXXTEDAOx39cJ1vdpplnn5tQ0TcsVoVLgOly4GL1myRJLUokULi/UrVqxQ3759JUmnT5+2SPrr169rwIABunjxogoXLqz69etr+/btql69ek6FDRfDyGBIt/5gFi4W6DJ/JHd9v89iecHO7BsVnGzWj+P1v51HtGripxnvnMKXb32vx4Z3zKaokJF9G//Uv/uOa/HQFYqLiZekVB/2kxUvn3d7hjqK0Wh0mdcJZE1w6bsoBOdxRqPRovjZqOO9OTJC3NPT01xkHdhgtNV94mPj5ePnYx64cDM+QYe2/k/vjl0tSfpygW3XWrR7ltXBD7u+32fT3/uBDUardJUQnTl8PsN9d/+wX7t/uNVWJ2URee+PB/TpnK+kOdLrP09Sfn9+UQQA2SllIViSChYq4KRIkFu5dDHYliLe5s2bLZbnzZunefPmZVNEyG0YGQxJunDikqY+MVcNO9yjvlO6OzscSUr1AS0nPpwGFPFX6IP1FPpgPavb0/rA+vPH2/Tzx9s0+6dX5V/YcRPhwDa7vr3VziO5EJyeVz4els3RuKexH76omb3fkiT9s/uoqt9X2ckRIa0vPGzR65WuMhgMavxIAwdG5JqmfTNG4zve+kD45Vvfq22f5ioQyAfCZGf/tWwv0mt81xyPYfGe2ea/r5s//U0tujXR9bAIvfLQDDV5pKGSEpPMbZusafbofeoy9EH55bec3ySjL65CH6ynBu3ranDo2AxjTK8Q3KRzQ/22brfVbfs2/mkuXicb0WoS7SQAIBud/uecxXKFWmWdFAlyM5cuBgNZRS0YknTxRJikWyNaXKUY7IoW7pqZ7ofGTau3ql2/ljp24KSOHTipji+0ZQRlDjiy/4TN+7pbT9ScUrrK7R7MC4e8l24hI+JKpALu8ldcdJz8CvjxpaMLmPzlKE3scmtirY7Pt1WTzo7rCevqihS/3YN2wwdbFB0Ro96vPubEiFzLrCffMt+u26KG0/9mffb61/rs9a/Ny799Zb3ImuyukMLqMbaL1W223BcPD49Ur2cRVyKVPyCfvLy9tHT4Kh3c9r80jpaent5T97ato0cGtU/VC/mdUR9o/y+HrB4XHRnDBLUAkE1S/m2TxASfyBSKwXB7dImAqzlz2PLb3HEfDXNOIHe480OjyWSymDzmp1Wb9dOqzeblH1f+wugfFzLlK+sju2GbBu3qas+PByRJp/53VmWr3e7LfDM+QTu+2nPrZ9BpmPXjeAUU8c/uMPOEU3+fSdVKx5o3f5tmnjBx4a6ZMplMef4LkeiIGGeH4DISExItlp+d85STIrHP4LeeVvVGVbLt/IFFA8y3X5jXN9V2k8mk+NibFiORCxYqkKrtRVqFYEn6auF6te3TXPkK+jFSHQCyUbeRjzg7BORSFIPh3gwGqsFwOck/R09WqlIJJ0WSPoPBoC5DHtSXC753yPnOHrmgOX0Xau6vU/J8wSY7FA0p4uwQcrW+U7ubi8Gzn1qgRbtnaeoTb+jiycs2HT+m3TSNWz1UpSqHZGOU7u/CiUua3Wdhhvu1ebK5uRAs2TZKMi/Iy/MkRFy5ob1fH1TZaqW0ZPhKi23zt01zTlD/mfnDKxrbYXqa2xfumukyOWwwGFK1pMjI1K/HqFBwgIY2fkVGo0nbvtxlMfGjK90/AHAnzI2AzKIYDAA5aO3875wdgl0eePL+dIvB+zb+qXoP1E61fsc3e7Xxw1914filVNuG3DeOEcUOVPv+6nr+jT7ODiPXMxgMqnRPeXNbjpSj4u/k4WGQ0Zi66LZ2/nd6cfGAbIvR3cVGx2nqE3PT3P7MzF6q06KG/vz1b9VpUSMHI8s9/vz1b41uO0Wzf5rg7FByzJXz1zThkdlKTEiQl7d3qu0vLnpGPr6p1+eklKNxpdvtF3KjKetGaULn1yzW3VXiVruSfP75rI5OHxw6Vo063qsW3RqbvxDPDQXi39btVtXQSub7l5HkL2PyavugqPBojWozRZ5ennpr+/Q8+zgA2emPLX85OwS4CYrBcHt5eZQMXM/G1b9aLM/ZNNFJkdjGYDDozd+maWiT8Va3vzt2tfrEJ6jhg/XSLZ6lFFTqLkeG6NbiYzOeNK7/zJ45EEne8NLbz6c5kWLKlgTJ9m38U39s/ss8ovifPUezO0S3tv69n9PdnvzF0z2tauVEOLnWjevRunrhuvL7+ylfwXzODidb/LX9sBYNXZ7uPuVqlNaolYNzKKKMucuXoEVL3qXFe2YrKTFJnl6Wv/KZ/t04DWtq/f3Cjm/2asc3e83Lg0PHqkSFYnrl42GKj4nXT6u2uNRcBGcOn9Pq6V8o4C5/zVpv/T7daVDDMapQq6xF/84N72/RtYvh6jbK/X/KvW7BD5KkpMQkDWo4xurfTQBZs2zE++bbLbs1cWIkyO0oBsOtGQwGukTAZbV9qkWumGDF28dbTR5pqN++2q0XFz2jEwdP65ulP5m3r5r0mVZN+szm81VtWCk7wnRLbzyzJN3tC3bOoOVGDkjrca73QG3Ve6C22j/dSlO7pT2iFba5cvaqs0NwG692miXJfQqQsVGxer3/Equ/NknprR3TFXsjTj5+3vLNZ1+rA9jnzkKwJPn4emvxntmKi4nX/3b+q8SEJK0Y/3Ga57hw/JLFxLU/rvxFLy17TpXqVciWmO0RF33ry9jIqzckSeuX/6xjB05q0FtPS5KSkpIUH3NT+f0tv3A5fvCUJMloNFrct+N/nlSZaqXU65WuORG+U8TeiLVYHtpkPP30gWzUvn8rZ4eAXMw1vnoFsgm/TsqcEwdP6eWWE3WZD+YONaPXfIvlzkM6OCeQTOg1vqsW75mtqg0rqUP/1lq0e5aKlw9Oc/9+U7tr8Z7ZWrxntmb9eGtEzcPPtpEkbV27M0dizu1MJpPO/nshze2v/zyJQnA2SM7X4NJ36c3fpmnxntkZPs5FShTKgcjc2/VL4elOSDVu9dAcjAbOZjQa9evnOzSwwWgNbDBaL7eclGYh+OFn22jhrpmasn6UPDw85F+4IIVgJ/PL76t7WtVSg3Z1rX4hkV7bhXnPLcvO0Gxm8Lj9ISIxIVFfL/lRf+04bF435L5xGtFqksJOX1ZcTHyqXyK+PfIDi+Uzh8/rt3W7rV7LXX7FaO01fEy7aVr68ionRAO4P//CBZ0dAnIxRgYDkCSd/OuMXutrOWnPxC6v6bUNE1SwEDNBO0LKwt6zrz3pxEiyzmAwaNzqoVr28vvmD0etejRVkRKF1aJbY4ufeQYU8dfiPbN14fglffv2BmeFnKu8/vRi8+iilNr2aaGHn2sjD08Pl/kprbtJzld7eDu5H6k7eOXhmWluu6dVLSbmS0f/GT313riPnB1Gpl0Pi9CBnw9pzRtf23zMsKXPqnL9u83LRqMxO0KDg8zdMkXDm9/uYz316zFKTEjU/3YeMU/2V7FueR09cKtn+4Xjl1SiQjGHXDsuJl7rl/+sVj2bZnqE6vljt7+IGNhgtEW7qwO//KV1C39Q1QYVzet+XPmL/vz1b6vn2v3Dfp3997xa9miqwsGB2rfpoN4d86FGvz9EZauV0sczv5TBw6AnRnbKVKyZdT0sQq88NEOS1PH5tqrbsqbOHb2oeg/U0u8b/tS+DX/q2TlPZqoP8J+//i2TyUQPYSCLkn+pIEn3PVTfiZHAHVAMhnszGNzm2/bssub1r/XLp7+luX1Umymav3WqfPx8cjAq9/POKMsRInfXLeecQBzIy9vL/HNJW3h6Uby0RdiZK1YLwbSEcF0pC/OOLGJALvOTcVd2T+u0eyhv/WKnzh25oO5juuRgRLa5fPaqJnZ5LeMddWvSsqIl6TefW/nl99WCnTMUFxWnAoG3Bhh4eXupVrNqeuOXSfLw9JBvPl9zz/ap3eba/aWcyWTSL5/8ptrNqyv8UoQKBOZX8fLB+nT2Ou36fp/+/f2YRq2w7CF95fw13Yy9qZC7i6c639wBS823Zz35lsW2lL+cW7fwVp/clD3jv1q0Ps04V074RJK08cNftXjPbC0ft1qS9NH0LzT2w6HmX0/ZUgzeunaXat9fLdUEhSkd//OUzvxzTs2faGyxPjEhUV7et0oBCTcTzIVgSfpm6U/mdmDLX7l9zKCGY1S7WTU9PaNnqs8FKfvtPzKovdr1bambcTc1rNmr5mMZYAJkzZj208y3n5r0hBMjgTugGAy3ZqAYnKH0CsHJxrSbprlbpuRANO7JZDKl+ulcXvxZj6f37T851iaeycuuXriuNa9/rROHTuvGtahU292l72de8PHMLzX8needHUaukTz7vDWPDn1IFe8pn8MR5T4eHh6a9MUITer6eqptH8/6UpJUt1VNVW1YSdcuXte2tbvl5eOlf/ce07NznkzV8zQ7Xbt4XX/v+FcfzVhrdXvZ6qXUtEuoVk//Qg8/20YPDnggx2JD9vL09DQXglOydZLDw3uOKqRicUWFR6tE+dRfuG37crc+n/uNPp/7jdXjTx46o4ENRqvTC+3UrGuoIq9GmXu99x7/mGKj4pQQn6BCwYF6f7Lt8yBkxU+rNstovPU55czh8xYF1cGhY5WYkKA3Nk9Rfv98un4pQkVDiki6VchdPHSF/tlzVB//96OKuVumKDYqTj8u/1lVGlZU7ebV5enpqdf7L5Yk7Vl/QIFBAbq7bjldOXtVmz/brqZdQrXty112xfzn1v/p87nfque4R83r7mwr165vS0lKVTBOfq1/a/t0fuEEAE5GMRjuj2KwVUajUaf+OpNqfcqZf5PflMbFxOdobLlNXEy8/vrtH93TupY8PDwUHRkjv/y+8vTyTDWBiCTN2TTRSZE6V8qRwUMajaPAmULyZE/W8DjlLsk/c4ZtrBWCCwUFaPK6UcxCb4fgMkEa8d5Ac+HnTm8NelfD335ec59darF+/vPLNG71sGyN7a/th7Vo6PI0t3d58UG1ebK5xbomnRtma0xwTR2fb2sekbrty11q2iVUknT2yAW9OfAd834jVwxS+ZplJN16Pxtx5YY+nmn9C4Y7fb3kR3295EeLdR9O+9wR4dsteVRxeka3mWq+PWThMypWtqjGd0z9niFlG45fv0g9N0PyL472/3zQvM7eQnDK47Z9uUtT1o1SkRKFLUb4T/pihMW+i/fM1tKXV1m0zXix8a3hxsFlimrSFyMzFQOQ10RHxphvN+xwjxMjgbugGAzkIT+u/CXNn64t2j2LXl6ZlPINePX7Kuvvnf+mue/0b8eqQED+nAjL5dzZV3Vgg9EUOiWd/fe81fWvfjqcdgO5iKeXp5ISkyRJN+Nu0lrHBmveSD2Cr0BAPk37diwjxjKhQu2yWrBjhoY0Gmd1+52FYOlWL/stn21P9RPyrHh3zIc6cei0rl+KSHOfIQufUbXQSg67JtzDA0/eby4GfzRjbZojyOf0W5STYbmMBYPfzdbzJ78nu3E9SqPbTrXY1mdyN62a+KnFugmdLdu83PdQfQWXCUp13uff6GPRkzhZ2OkrvBcEbDSy9WTz7b5TujsxErgLisFwe7lpYHDElUhteH+Lfv54mySp+eON1W3UI6n2S7iZYPOIKZPJpEENx6S7T6HgQKuF4ELBgQoPS/vDHFJLrxA8/J3nVbhYoZwLxsVYK4IPbDBab2yeLN98Pnm2+DOj15sWy9O/G6fCwYFOigaZ1Xt8V62adOunxcOavcqH23RY+8VEsqnfUAjOCk8vT721fbp55J0tPp3zlUOKwUmJSbp89qr2bTqY5j4zvh+nQkG8vsE6bx/vdEe426PbyEfU7LH75OHhoZvxCUqIT9DK8Z+YJ73Nq0pVLmExofHwt59XhTplLV53/QsXtPo3rEH7umm+dkvp9zAtHByoBTtn6Oq5a6la2uTVgnBsVKx88/vyNw+AU1AMhlszGOTyPYMXDH5X/9t1xOq2LWu2a8ua7ZKkwQv6a+GQ9zI8X90WNfTsnKeUcDNBZ/+9YHX0RJ/J3bTjqz16fl5f+eX3TfNc1UIracc3eyXdKnJWv6+yLXcJVrR5srkq1qX35ehVgzW7z0KLdS+3uNU2Y+GumU55Q5w8wUnNJlX1/Nw+ORpDyv6AEi0hcrPQh+qbi8HSree29v3V9fwbfZwYlWs6eSh1iyJJ6jaqc7p/k2AbL28vLd4zW//+fkyLh63QzbiEVPss2j3L4ovigQ1G68VFz6hczTKpnoPoyBh5+3rrzy1/K/FmoirWK2/uXZpSWiOSU7afAjJSoXZZLdw1M92iY7L2/Vpp/YqfJUlPT++p/Rv/1P5fDmni5yNUrOztEao+vt7y8fXOcNJbo9GouOh4q32042Pj5ZvP8v+NGb3mWxRWCwTk05xNk2QymWQymSzeT0RHxliM7MtJ1t5bmEwmu38R6OHhodr3V7do+SBJDz7zgB5+rk2Gx3t6eiq4TJAW75mts/+et/gyfGCD0ap0T3m99Hbe6LkfGx2nl1tO4n2Ci8vM/yfZ4Z/dt2sFo1YOTmdPwHYGk6tXypwgMjJSgYGBioiIUEBA2rOzZgej0aiwsDAFBwfzLaEDTO8xTwk3E12uH9WdBaCc0ndKd7t6DMXciNWIVpPMy/YWqlwln/f/fFDvjP5Qkv334cLxS/r39+Oq3by6TEajihQvbLH90qnLmvxY6kl7JOmukMKa+PkI82zNuOWf3Uf01qDUP3V8bHhHterRNMfjsbUg6+h8vvO6b22fTq7kchFXIjW2w/RU6+dumeJyRc6cen3e+e3vunTqsirULquE+AS9O3a11f2YZT77JCUmmQu1yV8YS7eKt8mtTVK684s5a+9Z7izwxkbHmb/YSymnvuBylfcbyD6uUpSxxmQyKSE+IUvtgcLOXJG3j5cKBQfq22Ub9MN7m1ShXhl5mDzl5e2le1rXMvdFnr91qhJuJsqvgK88PXN+Mt6kpCSd/feCylQtmaXnJK3XIEl6YW5fla9Vxi3/Lhz/85T2bzqoTR9tlWT5OmkymfTP7qMqXi7IrX5N6Mqv0VcvXNfK8R+reuMqigqPUXhYhE7/c1ZXz1+3un/Z6qV06u+zenLC47qnda0ceX+X8u8wA0ecz5Z8dmZN0VYUg62gGOw+crIYbDQaJd36Ix5xOVIXT17WuX8v6NcvdqhQ0QAd+/NUusc/Pb2n7m1bx7ycmJCoxIQkfThlTaqfXC7YMUPjO85UxJUbNsVWrGyQJn4+IuMdrUj5x8fegkZm8nnRi8v1147DCrjLX7PWj7c7XmusFYOTkpJ04dgllaxUIt03snd+CB69arAKFyukuQOWKOzM1TSOct4o19zk8N5jevOFt9Pdxy+/r56a9ITqtqyZLTEc3X8iVR/NnCgG35lX5Iv7yKg1j6s81znxfuNmfIKGNc34dXzmD68osKhrvlF2d0lJSRpyn/URvbXvr67nXn8qw1ZTacnJD6y8f4a7ySs5besAmcEL+uf6XyheOH5JU7vNTbW+96uPqW7Lmvpszlfa/cN+SZKHh0ELd6U9uXBu46x8Ti51GQwGxcXEKyo8WjGRsSpdJSTTf9vSkp1/8ygGuxaKwW6MYrD7mN5zvhLibmrS2lFZPtc/u49o/6ZD2ro29Qy9mVXl3rv14uIBDh3pEBUerS/f+l4N2tdVlQYVHXLuzP4BsiWfLxy/pGLlguTh4aFvlv6kH97bZN7m4WHQgp0zs3wfDvxySG+P+sAi/i/f+l4bPtiiZ197UpXvvVsjWk1S7/GPqdp9lXTm8HkVCMyvN55ZYve1FuyYIU+vnB+lkZvZ0tf6Tn0md1Pog/Wy5bqD3nxaNRpXSbXeUa/Px/88ZdEPcf7WqUw25mZuxifoj81/acX4j61u79C/tTo+3zaHo7KUE+83RrebqhvXotLcXigoQDO+t723LbJPWqPaM6PnuEfVtEuoQ85lK94/w93kpZyOvHpD277crW+X/WTT/t1GPqKmXUPNnw9c9fE5e+SCipUtqndGfaj4mHgd2X/CruOHLnlWVe69O5uiy1nZmc93/mrA2mSFtnhmZi+Vq1lagUUDLD7L7f/5oDy9PLX05VXpHl+vdS09M6u33de1BcVg10Ix2I1RDHYfM3rN181Yy2Lw9UvhmtFzvqIjY9M8LuWL7Km/z6TqcZoVhYIDNfHzl1P1HXNls558S6f/OSfJ9lFtiQmJio2O07Vr11S6XCmZjCZ5eHqY/2Cf/fe8ZvZ+y7z/S8ue07znllk916Lds7JUEN6yZoc+fW2dpNvPraNbdTw69CE90Pt+h54zL0lKTNL0HvPU/PHGKlKisIqVC9KbL7yd7mz0yT+njAqPVmxUnPzy+youJl6SVOmeW/2Z2/VrqfjYm6rTooZF3p44dNqin3a3kY/o0zlfmZetvdFy1OszfYLznn2bDurdMR+mWl/9vspq06eFKtYtl+NfImXX+w2TyaTEhESdP3oxw7+d5L5rSauFT0qPvfSwfPP7avX0LyzWN3mkoTq/2MHqRKE5gffPcDd5NadjbsQqJjJGf275Wy26N9HXi37UT+9vTvcYb19vFS1ZRBeOX1L5WmVUpmopeft6yb9wQX254Ps0j2vY4R51felhFSxUwKEDc5KSkvTlm9+bJwTPqrLVS2nokme1eurnunT6ssatHpa5uBKTZPAwWPTj9vbx0rClz6psjdJZyrPwyxGa3n1eup+vExMS5OVtW//4tn1a6KdVmyVJ/kUKpvvFcla9tOw5VapXwe7jEm4maN/Gg1o18VPzupfffUH+RQoqsKi/wz7rb/tylz6acatFzLRvxqRqWYicRzHYjVEMdh+Tus5R2OkrevO3afr8jW8dOqo3pU4D26tFt8byzefjsv3MsiplASu94uydP7u35w9/sklfjNCsJxeYC3uSdN9D9dOdpTg9rzw8I92iYlYUKxukCWtedtvn3RUk3EzQ3zv+VeSVGypSorAWDV0u6dYXK/kK+unC8Us2n6ti3fI6eiD1yIzFe2brr+2Hzece/f4Qla1WymIfR7w+39ljOqtfdCB3iY2O06RH51j9UHPnh53HhndUo471la9g6omMHCG73m+kNylqsqZdQtVz3KMOuyYcz2g06trFcHl4GJQ/IL/L9by+E++f4W7IaUux0XH65ePfzKOHazapqtP/nJO3j5cir0UpIT71RJn2CC5TVL75fJSvYD4d//OkEhOs9zJ+9rUnVadFDf2x+S+9PeoDFQoOVOSVSL387gtaNvIDRV61rYVfVs3fOlWHfjusaqEV5eHpodioOBUKCky1X8oBMVkRVOoudejfWjWaVNGR34+n2f8/PZn5TJhVOTGBaVrtlvpN7a4G7W2fq8eaxIREvdj49i+o+BLdNVAMdmMUg92HI0d/1m9TR/2mdc+zz4u1x3LKV6O1eurnOrz3WJrHpfeHv9ML7fT1kh9TrU/+Q7f9qz36cNrnFtuGv/O8KtYtb/V8d/5M6MLxS1o28n2Fnb6SZnyZUa5mab207DlmR3chZ49c0IGfD+nn/ybjCH2ovo4eOKGgkkV0YPNfaR5Xv00d9Z/R07yc3pce9rw+R0dEKzoiRsFlbs9mHnb6siZ1vV0IfvXT4SpRoZjtdxJuw2QyafOn23Xq7zPa/cN+lapcQjdjb1rtQ14gIJ95pE2ZqiU1dMkARUfEKDAoIEuvQdnxfiPlRGVpsfZFC5BVvH+GuyGn7WcymRQbFadrF67rz1//p4KF8is+5qbuKllE4ZfCVadlTe35Yb/FZ48G7erq6vnriomKVeyNWMXciMtyYdkWb/wySX4F/NIcEGA0Gi1G8OZGHZ9vq9a9mslkMum9sR8poHgBbf/id0nSc68/pWUj3jfv+9CAB9SuX0tN6PyawsNuDeApVbmE6jSvoVY9m+rzud9qxzd7Jd2aEP3ymSv67p2Nkm79GjBlC445mybm+K9U0qo5ZLWt3a7v91mMPKYY7BooBrsxisHuI71i8KwfxyugiH+q9TfjEzT1iTd09fx1FQoO1LRvxvBcSNr70x9a/spHdh/XoncjPTak063G/dFx8snnYzHz8ayn3tLp/91qQTH5y1EKKnWXxfEZ9ZMdvKC/qoVW0orxH2vvT39o3q9TFHk1ShO7vGZ3rGnpMfZRNe3SkBGcuZTJZNLfO/7Vt8t+Uq/xj6lE+eA0f5L/yawv9esXt39BkPJNV1qvz0lJSTIYDNrx9V59veTHVKM+F+ycIYPB8md5pSqXyPTP/OC+TCaTTv19Vq/1Xah7WtaUt5+3rp6/rmN/nLS6f1Y+FDjy/YYtfb9ffvcF3V2nXJauA6SF989wN+S08xmNRu1Zf8CiGGePGo2qqNEjDeRfuIC8vD1VvlZZu88RefWG4mLiNenROZmKIaXn3+ijUpVLWG0zEBcTrx9X/KK46Hjt/XF/uu0e7tRvanfVbl493bYI7p7PsdFxernFRKvbsvJeLWUto1WPpnpseMdMnwuOQzHYjVEMdh93FoNf/3mS8vtnz09u84q/dxzWwheX27TvG5snK+JGuEPy+c5JtxyhVtNqemZ2L0b4wkJakzTc+focFR6tUW2mZOoafLMPe0Reu6Ex7aZZ3ZbZXHLk+43Xn16s4wdPWd32wty+qtWsWpbOD2SE989wN+S067rzl4hXzl3Ve+M+ko+vt4YufTbbn68Zvebr7L8XbN7fFSa3zgv5nHAzQf/uPa6K95STh6eHhjYZL0nqPLiD2vZpkalzpvxMYuu8Pch+FIPdGMVg93HhxCWd+PO0Gj/SwNmhuCWj0ZhunmZHPp/631nNfmpBpo7tMaaLmnW9zyFxwL3d+UVScOm7FHbmqkP6nc3+6VX5Fy6YpXMgb5v37FKLn0Q2evhedR/b2fzFVvIEiT3GPqpmj4ZaPUdWX5+NRqO2fLZDa9742up2a7/0ALIL75/hbshpuJO8mM9pDS7J6XPA8dylGOzl7ACA7FSifDGVKE9PzuzijD/mZauVMv8xTEpKkoeHhy6duqwpj79hsV+Tzg3V/InGCrm7WJ5504HsY62X653uLLzt//mg3hn9ocU+XYc9TCEYWfbS289bfEDY8e1e7fh2r7qN6mwxUczHM9fq45lrHfIBwmQy6bM5X2vbl7uUlGh9Yh2JX+AAAABMWPNyqs+n9oi8dnsywoefbeOIkAALFIMB5FrJvYeLlwvm21I41OI9s3Vk33HNe26ZJMnT00NJScZU+7246BlVaVDRaj/pe1rV0rRvxmh8x1mSpOFvP6+K91if/BCw1+I9s7VsxPv6Y8vtCRLTmjE8uXDctk8LdR7cwabzh525YnOPwklrRyq4dFGb9gUAAHB3xcsFm29fD4tQ4eBAm4+NuBKpsR2mm5fb92/l0NgAiTYRVtEmAnAM8hnuhHyGqxrfcaauXQw3Lz8zs5fqtqqZ4UzkiQkJqlTvbg1dPEBXz1/XT6s2a9f3+zK83uj3h6hstVJZDRtwGF6f4W7IabiTvJrPmW3zcGe7OgY9uRZ3aRNBMdiKiIgIFSpUSGfOnHFKMfjy5csKCgrKUy+UcE/kM9wJ+Yzc6tzRC3rjmSWp1tvSA7tg4QIa++FQ5Svgl13hAVnG6zPcDTkNd5JX8zniaqQmd31dktTxhXZq2a1JhscMbzHBYnnS2pEKKOKfLfEhc2zJ58jISJUuXVrh4eEKDLR9VHhOohhsxdmzZ1W6dGlnhwEAAAAAAAAglzlz5oxKlXLNX9NRDLbCaDTq/Pnz8vf3t9oHMjslf4PgjFHJgKORz3An5DPcCfkMd0I+w92Q03An5DPciS35bDKZdOPGDYWEhLjsaHgmkLPCw8PD6dX7gIAAXijhNshnuBPyGe6EfIY7IZ/hbshpuBPyGe4ko3x21fYQyVyzRA0AAAAAAAAAcCiKwQAAAAAAAACQB1AMdjG+vr6aOHGifH19nR0KkGXkM9wJ+Qx3Qj7DnZDPcDfkNNwJ+Qx34i75zARyAAAAAAAAAJAHMDIYAAAAAAAAAPIAisEAAAAAAAAAkAdQDAYAAAAAAACAPIBiMAAAAAAAAADkARSDAQAAAAAAACAPoBgMAAAAAAAAAHkAxWAAAAAAAAAAyAMoBgMAALiAFi1aqEWLFublkydPymAwaOXKlZk6n8Fg0KRJkxwSG25Jfk5ef/31DPedNGmSDAZDDkSV2ubNm2UwGLR582aHnK9v374qV66cQ87liux5rvj/CgAA5HYUgwEAADLh4MGDeuyxx1S2bFn5+fmpZMmSatOmjRYsWODs0Kzavn27Jk2apPDwcGeHYrOkpCStWLFCLVq0UJEiReTr66ty5cqpX79+2rt3r7PDy9UMBoNN/xxVUM4OYWFhGjNmjGrVqqWCBQvKz89PFStWVL9+/bRt2zZnhwcAAOCSvJwdAAAAQG6zfft2tWzZUmXKlNGAAQNUvHhxnTlzRjt37tSbb76pIUOGZPkaZcuWVWxsrLy9vTN1fGxsrLy8br/V2759uyZPnqy+ffuqUKFCWY4vu8XGxurRRx/V+vXrdf/992vcuHEqUqSITp48qc8++0yrVq3S6dOnVapUKWeHatX48eM1ZswYZ4eRpg8++MBi+f3339eGDRtSra9WrZreeecdGY3GnAwvQ7t379ZDDz2kGzduqHv37nr++efl6+urEydOaN26dVq5cqW2bNmi+++/P8NzufpzBQAA4EgUgwEAAOw0ffp0BQYGas+ePakKq2FhYQ65hsFgkJ+fX6aPz8qxrmDkyJFav3695s2bp2HDhllsmzhxoubNm+ecwGzk5eVlUYx3Nb1797ZY3rlzpzZs2JBqvSu6fv26OnfuLC8vLx04cEBVq1a12D5t2jR98sknypcvX7rniY6OVoECBVz+uQIAAHAk2kQAAADY6dixY6pRo4bVEbbBwcEWyytWrFCrVq0UHBwsX19fVa9eXUuWLMnwGtZ6Bvft21cFCxbUuXPn1LlzZxUsWFBBQUEaMWKEkpKSLI5P2dt00qRJGjlypCSpfPny5hYAJ//P3n2HR1HubRy/t6R3QiqEDlIUVMCIgiBSREVRPAqooHKw0BQLiq8NLIgNFBX1qGABFRSwAiIgigI2ELDQpPeWnmw2O/P+EbMSEiABkk1mv5/rygU79dnZXzaz9zz7zObN6tixo1q1alVqG0477TR17979uG091bZv367XXntNXbt2LREES5LD4dA999xTrFfwihUr1KNHD0VGRio8PFwXXXSRli1bVmy9KVOmyGazacmSJRo+fLji4uIUHR2tW2+9Vfn5+UpLS1P//v0VExOjmJgYjRw5UqZpltrG8ePHq27dugoJCVHHjh21Zs2aYvNLG4fWZrNp6NChmj17tk4//XQFBQWpRYsWmjt3bont79ixQzfffLMSEhK8y7311lulHqtevXopLCxM8fHxGjFihFwu11GP7Yk4cszgw8dOfvnll9WgQQOFhoaqW7du2rZtm0zT1GOPPabatWsrJCREV1xxhQ4ePFhiu3PmzFGHDh0UFhamiIgIXXrppfr999+P255XX31Vu3bt0oQJE0oEwVLhce7bt6/atm3rnVb0evzxxx/q16+fYmJi1L59+2LzDudyuTRixAjFxcUpIiJCl19+ubZv317WQwYAAFBlcQkcAACgnOrWraulS5dqzZo1Ov3004+57KRJk9SiRQtdfvnlcjqd+uyzzzR48GAZhqEhQ4aUe98ej0fdu3dXamqqnn32WX399dd67rnn1LBhQ91+++2lrnPVVVdp3bp1ev/99zV+/HjVrFlTkhQXF6cbbrhBgwYNKvFcfvrpJ61bt04PPvhgudt4subMmaOCggLdcMMNZVr+999/V4cOHRQZGamRI0cqICBAr732mjp16qTFixcrNTW12PLDhg1TYmKiRo8erWXLlun1119XdHS0fvjhB9WpU0dPPvmkvvzySz3zzDM6/fTT1b9//2Lrv/POO8rMzNSQIUOUl5enF154QZ07d9bq1auVkJBwzLYuWbJEM2fO1ODBgxUREaEXX3xRvXv31tatWxUbGytJ2rNnj84991xveBwXF6c5c+Zo4MCBysjI8Abkubm5uuiii7R161YNHz5cycnJevfdd7Vw4cIyHumTM3XqVOXn52vYsGE6ePCgnn76aV1zzTXq3LmzvvnmG913333asGGDJk6cqHvuuadYmP3uu+9qwIAB6t69u8aNG6ecnBxNmjRJ7du314oVK455w7rPPvtMISEhuuqqq8rd5v/85z9q3LixnnzyyaMG/ZL03//+V++995769eun8847TwsXLtSll15a7v0BAABUOSYAAADK5auvvjIdDofpcDjMdu3amSNHjjTnzZtn5ufnl1g2JyenxLTu3bubDRo0KDatY8eOZseOHb2PN23aZEoyJ0+e7J02YMAAU5I5ZsyYYuueddZZZuvWrYtNk2Q+8sgj3sfPPPOMKcnctGlTseXS0tLM4OBg87777is2ffjw4WZYWJiZlZVV2iGoUCNGjDAlmStWrCjT8r169TIDAwPNjRs3eqft3LnTjIiIMC+44ALvtMmTJ5uSzO7du5uGYXint2vXzrTZbOZtt93mnVZQUGDWrl271NckJCTE3L59u3f68uXLTUnmiBEjvNMeeeQR88hTbUlmYGCguWHDBu+03377zZRkTpw40Ttt4MCBZlJSkrl///5i6/fp08eMiory1tSECRNMSeb06dO9y2RnZ5uNGjUyJZmLFi067rErMmTIkBLtLTJgwACzbt26JY5DXFycmZaW5p0+atQoU5LZqlUr0+12e6f37dvXDAwMNPPy8kzTNM3MzEwzOjraHDRoULH97N6924yKiiox/UgxMTHmmWeeWWJ6RkaGuW/fPu/P4bVb9Hr07du3xHpHvlYrV640JZmDBw8utly/fv1K/F4BAABUNwwTAQAAUE5du3bV0qVLdfnll+u3337T008/re7du6tWrVr69NNPiy17+Lil6enp2r9/vzp27Ki///5b6enpJ7T/2267rdjjDh066O+//z6hbUVFRemKK67Q+++/7+0p6fF49OGHH3qHH6hsGRkZkqSIiIjjLuvxePTVV1+pV69eatCggXd6UlKS+vXrpyVLlni3V2TgwIHFhgVITU2VaZoaOHCgd5rD4VCbNm1KPa69evVSrVq1vI/POeccpaam6ssvvzxue7t06aKGDRt6H7ds2VKRkZHe/ZimqY8//lg9e/aUaZrav3+/96d79+5KT0/Xr7/+Kkn68ssvlZSUpKuvvtq7vdDQUN1yyy3Hbcep8J///EdRUVHex0U9sK+//vpiY/CmpqYqPz9fO3bskCTNnz9faWlp6tu3b7Hn53A4lJqaqkWLFh1zvxkZGQoPDy8x/YYbblBcXJz357777iuxzJG/O6Upeh2HDx9ebHppQ5YAAABUNwwTAQAAcALatm2rmTNnKj8/X7/99ptmzZql8ePH6+qrr9bKlSvVvHlzSdL333+vRx55REuXLlVOTk6xbaSnpxcL08oiODhYcXFxxabFxMTo0KFDJ/xc+vfvrw8//FDfffedLrjgAn399dfas2fPcYdpSE9PV25u7gntMyoq6qg3+IqMjJQkZWZmHnc7+/btU05Ojk477bQS85o1aybDMLRt2za1aNHCO71OnTol2iJJKSkpJaaXdlwbN25cYlqTJk00ffr047b3yH1LxV+/ffv2KS0tTa+//rpef/31UrdRdJPCLVu2qFGjRiXGuy3tWFSE8hxHSd7nuH79eklS586dS91u0et/NBEREcrKyioxfcyYMRo6dKikwgs2palfv/4xty0VHle73V4stJcq77gCAABUJMJgAACAkxAYGKi2bduqbdu2atKkiW666SbNmDFDjzzyiDZu3KiLLrpITZs21fPPP6+UlBQFBgbqyy+/1Pjx42UYRrn353A4Tvlz6N69uxISEvTee+/pggsu0HvvvafExER16dLlmOvdcccdevvtt09on5MnT9aNN95Y6ryim4KtXr1aZ5555glt/1iOdgxLm24eY1zZU7nvov0U1cT111+vAQMGlLpsy5YtT2mbTlR5jqNU8jm+++67SkxMLLHc4b2KS9O0aVP99ttvcrvdCggI8E4vy3E52gUIAAAAf0EYDAAAcIq0adNGkrRr1y5JhTe6crlc+vTTT4v1ojze1+ArwpG9Rw/ncDjUr18/TZkyRePGjdPs2bM1aNCg4wbPI0eO1PXXX39C7Tm8p+6RevToIYfDoffee++4vZPj4uIUGhqqtWvXlpj3119/yW63l+iperKKerYebt26dce86VlZxcXFKSIiQh6P57hhfN26dbVmzRqZplns9S3tWFQlRT1u4+Pjj/scS3PZZZdp2bJlmjVrlq655ppT3TzVrVtXhmFo48aNxXoDV/XjCgAAUBaMGQwAAFBOixYtKrXHaNFYo0UBUlGYeviy6enpmjx5ciW0sriisX/T0tJKnX/DDTfo0KFDuvXWW5WVlVWmkLd58+bq0qXLCf0kJSUddbspKSkaNGiQvvrqK02cOLHEfMMw9Nxzz2n79u1yOBzq1q2bPvnkE23evNm7zJ49ezRt2jS1b9/+uMMOlNfs2bO9499K0o8//qjly5erR48eJ71th8Oh3r176+OPP9aaNWtKzN+3b5/3/5dccol27typjz76yDstJyfnqMNLVBXdu3dXZGSknnzySbnd7hLzD3+Opbn99tuVkJCgESNGaN26dSXmn2xv7qLX8cUXXyw2fcKECSe1XQAAgKqAnsEAAADlNGzYMOXk5OjKK69U06ZNlZ+frx9++EEffvih6tWrp5tuukmS1K1bNwUGBqpnz57ekPV///uf4uPjvb2HK0vr1q0lSf/3f/+nPn36KCAgQD179vSGxGeddZZOP/10zZgxQ82aNdPZZ59dqe070nPPPaeNGzdq+PDhmjlzpi677DLFxMRo69atmjFjhv766y/16dNHkvT4449r/vz5at++vQYPHiyn06nXXntNLpdLTz/99ClvW6NGjdS+fXvdfvvtcrlcmjBhgmJjYzVy5MhTsv2nnnpKixYtUmpqqgYNGqTmzZvr4MGD+vXXX/X111/r4MGDkqRBgwbppZdeUv/+/fXLL78oKSlJ7777rkJDQ09JOypKZGSkJk2apBtuuEFnn322+vTpo7i4OG3dulVffPGFzj//fL300ktHXb9GjRqaNWuWevbsqVatWqlPnz5q27atAgICtG3bNs2YMUNS6eMzl8WZZ56pvn376pVXXlF6errOO+88LViwQBs2bDih7QEAAFQlhMEAAADl9Oyzz2rGjBn68ssv9frrrys/P1916tTR4MGD9eCDDyo6OlpSYQ/hjz76SA8++KDuueceJSYm6vbbb1dcXJxuvvnmSm1z27Zt9dhjj+nVV1/V3LlzZRiGNm3a5A2DpcIbyY0cOfK4QzNUhtDQUM2ZM0dTpkzR22+/rccee0w5OTlKTk5W586dNXXqVNWqVUtS4ZAT3333nUaNGqWxY8fKMAylpqbqvffeU2pq6ilvW//+/WW32zVhwgTt3btX55xzjl566aVj9nYuj4SEBP34448aM2aMZs6cqVdeeUWxsbFq0aKFxo0b510uNDRUCxYs0LBhwzRx4kSFhobquuuuU48ePXTxxRefkrZUlH79+ik5OVlPPfWUnnnmGblcLtWqVUsdOnTwXkw5lnbt2mnNmjV6/vnn9cUXX+jDDz+UYRiqVauW2rdvr9dff10dOnQ44fa99dZbiouL09SpUzV79mx17txZX3zxxSkfcgQAAKCy2cxTfVcMAAAAVEsvvPCCRowYoc2bN59wr0oAAAAAVRdhMAAAAGSaplq1aqXY2Fif3OAOAAAAQMVjmAgAAAA/lp2drU8//VSLFi3S6tWr9cknn/i6SQAAAAAqCD2DAQAA/NjmzZtVv359RUdHa/DgwXriiSd83SQAAAAAFcTu6waU16RJk9SyZUtFRkYqMjJS7dq105w5c7zzO3XqJJvNVuzntttu82GLAQAAqq569erJNE0dOnSIIBgAAACwuGrXM/izzz6Tw+FQ48aNZZqm3n77bT3zzDNasWKFWrRooU6dOqlJkyYaM2aMd53Q0FBFRkb6sNUAAAAAAAAA4FvVbszgnj17Fnv8xBNPaNKkSVq2bJlatGghqTD8TUxM9EXzAAAAAAAAAKBKqnZh8OE8Ho9mzJih7OxstWvXzjt96tSpeu+995SYmKiePXvqoYceUmho6FG343K55HK5vI8Nw9DBgwcVGxsrm81Woc8BAAAAAAAAQPVnmqYyMzOVnJwsu71qjs5bLcPg1atXq127dsrLy1N4eLhmzZql5s2bS5L69eununXrKjk5WatWrdJ9992ntWvXaubMmUfd3tixYzV69OjKaj4AAAAAAAAAi9q2bZtq167t62aUqtqNGSxJ+fn52rp1q9LT0/XRRx/pjTfe0OLFi72B8OEWLlyoiy66SBs2bFDDhg1L3d6RPYPT09NVp04dbdmypdLHGjYMQ/v371fNmjWr7BWE6uCezo/6ugmWFVerhlKa1tKvC1bL6XTqyjsu0YznPi19YdOUu6BAbbqcqVXf/qHD324S6sWrTfdW+uK1+cfcn9PpVEFBgSQpMDhQqZeerbU/b9TeLfu8y9RukqyompH6/Ye/VKdZLW39c8fJP9Eqrk6zWmrZsYVSLzlbAUFO2ex2bVmzVa+MmCJJSu1xlpbPWXHc7dRMrqG0vRmKiovQgV2HKrjV5RcQGCB3vtv7OCQ8RDGJUbLb7XI47bI77AoMCZTdZi/8JodNstls8ng8ys3M1ZY/tnvXrZlcQ3Wa15ZMU4ZhauWiNcfcd1hUqLLTc2S323X13Zfpmw9/0I6NuxTgdErH+NZIj5s7yxkUII/Hoy9f//rkD0I10f+Ra1S7SZKiE6LkyslXUGjgcf+O7d60V88OfKXYtGcXPqrvPl6mL/+3QPdOHqwaSTFHXf/v3zYruXGSnAEOOQOc8ngM2WxSfp5bMk0FhwVr3/YDCo0MkWEYGn3Vs6fkuZZHjYRoHdyTVnxaYozsdlthGdntstkLb3hrt9vkznMr42CWajdJkjPQKafTqQ0rNyk/L1+SdNo5jZSdlqPt63YqsX68nAFObV+3U7UbJ6vjNe2K7ceUefiDf/4t/M/anzdq2Ze/KMDp1EXXXaDc7DzFpdRUxv5MRcaGyzBMmaYpwzBkegyZhqms9BxlHcpWbFKMstJztOHXv6vk+8aJePijuxURE+79RphhFD7n7Mxc5aTlyJXrklFgKCw6TIbHUF6OS578AuXl5is0MkS7Nu5RbnaeOvdtL5vNpj+XrdOXby5UQIBDzkCnompG6Lxe52jrnzv03YylatKmoboPvFB5mS5FxUUoKDRIpmkqNytP7rx8/f7DOjVp01BxtWP/eR1MZadnq8BVILvTrsevHV/hxyS6ZqQ6/KedVixYre3rdnqn22w2XXJLF+/fdLPAkGEYmjflm+Nu02azyTRN1UiMkcNh074dB73zit5zj7du09TG+mv5+uIz/znfON77M6whMjZCQcEBcgYFFP5+eAzt3bq/2DJxtWNVIzlGCXXj9P3Hy3XJrV10YOch1WqcJJtNys1y6bdv1mjrnzt0wdXt5MrN1/IvflF4dJiy0rJ99MwOQ00fVY3EGNVqlCjTLOx9Z5qmVPR//fP/f/7omYapdT9vlCTVP6OOAoICVJBfoL9XbZFU+DfVZrPJbrNLNslut8tmk2x2u2x2qSDfo99/+Mu77w69z1VAYIBcefna+sc2JdaLV1h0mAKDnNq4aouy0nK0Z/PeU/p8z77oDP26YLUkKeW0ZDVLbSxHgEPz3/5WZ3c5Q+78wvMGZ6BT2YdytH39zuNssVBcrRqKS4lTcHiQAgKL15nNJm1csUn7dx6Sw+HwfhZreUELrfr29/I/iSPqOblRonZu2H3UxZufe5qcgU7Z7Co8X7Lb/zlv+ufHYdf2dTu1Y/2u4+66x82dtXvzXh3YeUgpzWqrZq0acjjsmvnCF5Kk3iMuk2mY3vMe0zBlmkaxxzJMpe3L0NLPflbqpa21b9t+bw0FBgd6z9HKqsv1Fyi54b/Dmh7am64d63fp169XlWs7pYmJj9KhvenlWuf8Xueo17Aexc6BJGny/32gP5evO6F2JDVMVOOz68uVk6823VoqLqWmQiNDLJFxlSWzy8jIUN26dZWWlqaoqKhKbmHZVMsw+EhdunRRw4YN9dprr5WYl52drfDwcM2dO1fdu3cv0/YyMjIUFRWl9PR0n4TBe/fuVXx8vCV+UXxlcNv7JEn/9/6dqtUoyadt8RR4lJfjUsb+TO3bfkBrf9ygRR9+751/3uVt9cOnP+nKYZcoOj5S+7Yd0Hczlyl9f2ax7VzQ+1x9+/GyMu0zMDhAkbER2n/Yh6zhL/9Xc95YoHaXt1Xrbi2Vn+dWWGSoDMOosFqrKvX881e/6a3/myZJeuWnceVa968f1+vzV+er64CO8hQYikmIUmL9eL1+zzs6u2srnXlhCy2ZuVyfvfqVd53Tz2+qLX9u14V92qtGYrSat2uiP5et0+Y124q99kX63n+lzuvVVm5XgdL2pismIUpBIUHav/OgPG6P8rLzlFg/Xq7cfP0w+ydddH0HBQQGlPs4eAo82rt1v5IaJJRrvdysXP314wYFBgeqRlK0NqzYrA5XpZZrG6ZpypWbr7s6PixJGjpxoF4a9qYemn6XwqJCi4Uwlc1T4JHD6TjucidbzxkHMxUQ6FRIeEiJeTmZubLZbQoJC1a+y61pj3+sdb/+rbRynswVCYsMUXZGbpmXH/PJfXr+v5OUti9DF9/UWZcPLvx76fF45HF7FBgcWOp6W/7crkXTlui6h3qfUE3u2bJPo6/+N6C96fG+atv9zHJvp6yK/ja07tpK4dFhWjzjh6Mue+OYPso4kKnw6DCde1nrCmuTr5zq92d3vlueAkNfTflGBe4Cff3et9559U5P0eY124otH1c7Vvu2Hzjp/ZZXyw7NdM6lrRWbFK26zVMqff+nSuahLM19c6EO7DyoPVv3a89hF0gP1/zcJvrvuOsVHBpUyS2sXMerZ8MwvCGCJOXluBQQ6NSwdg+Uur2HZ9yt95+cqfCYcK1YWBjCvPLTOLnz3XI4Hd5tFV0wcThK/xtSdI7lynXp/bGz1Kb7mdq7ZZ8iaoRr+Re/qtuNnVSnWW0FBheGmpkHs7T2p41qltpYYdGh8rg9yjiYpZDwYHncHjmcdu3bflB7tuzT1j+2KyI2QvVa1FZK01rKy3bp+1k/qnaTJC364HtdO/IKSdJfP27Q/HcXK/Nglrre0FF7Nu9VdnqOzr8yVXnZeTI8hkIjQ7Xxt81K25Mut8utdb/+Xex5XP/Q1arVKFGhkaFyBjq14utV2rvtgLLTc9SqUws1bFVX899ZrE59zldETJhsdrucAQ45nA7vRYP0/ZlyOO3av/2g6p9RRzmZucrNzFVMYrTysl0Kiywc0m/z79tks9sKAxunw3vhtzCkq9qh6Kpv/9DmNdsUlxKrd8fMKDav6Pzz0J405eW4lFQ/QdkZObr3on+/nXrrs/312j3veB8HhQWqdqMkBQQF6q8f1+vRmfcqOCxIK75erQ+f+cS7XMNW9TTi9VtleAyZpqm0vRmKTY7RigWrVbtJsgrcBcU+D21YuUlb/9yhTteeJ9MwtX39LsWnxCokPET5Lrd2b9qrHz75STkZOep07fmyO+zas2WfmrdrotkT52jpZz9Lkm5+op9ad22pzINZ+vy1+Vr17R/KOJCpy27pqi79OyowqOR5QdHvhGEYysnIVU5GjmISoyUVdgAwTdMbxgeHBZ3QuUVV5c53Kz/PrR9m/6TYWjX0xv3vSSr/Z5PqqKp8JqxuPAUebf1zuzas2Ky2Pc5UdNypCRXT92coJCKk1N/R0rjz3dr1917VapSoX79epckPfaC7Xr9Njc6qf0raU92UpZ59mSmWlSXC4M6dO6tOnTqaMmVKiXnff/+92rdvr99++00tW7Ys0/YIg6u/qhQG+7OqUs+H9qbr/y59Utfcc7k6XXt+he1nzfd/KbF+vGom1zjqMkUfJP319/vvVVsUGhmixHrxvm5Kufm6nr94fb7CokL1/ewfdcmgLvrffYUfIhxOh0a9N1xRcZF6++EPZZqmhrxws6R/3wvP6nyGwqPD9N3MwgtKE5Y8rv/d+666DuioJq0LvzWzfd1OffH61+o/+hqFhAVXynMyTVOv3vW2mrdrotCoULXu2rJCj21uVq5WLf5DbXuc5be/g0V8Xc9S4QWS4LBgBQYVfgNg9bd/ylPgUcaBLH084fOT3v7LPz4lm81WIgi0ov+NfFcrFq1R7SZJiqwRoT+WrVN8nZp69ON7fd20SnEy9ewp8GjJzOX6c/l6DXr6+n966f+7jR0bdsk0TNVuknyqmw2Ly83Kld1hl+ExSr0QLEmfvDxX86Ys0h2TbtFpbRrqrx/Xy2azqXHrBset6T+WrlVi/XjVSDz6N2hQNZmmqZkTvlCrC1uo0ZnWD9SqwjkHTp2ydqSxKsJgHxk1apR69OihOnXqKDMzU9OmTdO4ceM0b948NWjQQNOmTdMll1yi2NhYrVq1SiNGjFDt2rW1ePHiMu+DMLj6IwyuGqpSPZumaekgABWvKtWzVHhhIetQtmISoo+6zJJZy5VYL9575b7ovdEfeqHg2KpaPR9p19979Ni1z0uSBjx6jVKa1ir2lcrt63Zq79b9OuuiM3RoT5piEqKVk5Gje7uMkeR/Nf7u6Bla+vnPSr3kbF1z7+Wa+vjHuvTWrkqqX75vglRXVb2egWPJz8sv8Q0cahpWQj3DSqwSBle7G8jt3btX/fv3165duxQVFaWWLVtq3rx56tq1q7Zt26avv/5aEyZMUHZ2tlJSUtS7d289+OCDvm42AB8jCIbVBAQGHDMIlqT2VxYfzuOmx/vqwE5rjPEKa0tqkKAXvn/8qF8Rrt0k2dtTs6hXXFhUmF5aPrZwfD8/c8WwiyWbdPng7goJD9F/n7re100CUEZHG4oJAICKUu3C4DfffPOo81JSUsrVAxgAAH9SkePxAqfaiYwVabfbJT/sdBRZI0I3PPwfXzcDAAAA1YAfni4DAAAAAAAAgP8hDAYAAAAAAAAAP0AYDAAAAAAAAAB+gDAYAAAAAAAAAPwAYTAAAAAAAAAA+AHCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMAAAAAAAAAH6AMBgAAAAAAAAA/ABhMAAAAAAAAAD4AcJgAAAAAAAAAPADhMEAAAAAAAAA4AcIgwEAAAAAAADADxAGAwAAAAAAAIAfIAwGAAAAAAAAAD9AGAwAAAAAAAAAfoAwGJZms9l83QQAAAAAAACgSiAMBgAAAAAAAAA/QBgMAAAAAAAAAH6AMBgAAAAAAAAA/ABhMAAAAAAAAAD4AcJgAAAAAAAAAPADhMEAAAAAAAAA4AcIgwEAAAAAAADADxAGw9JM0/R1EwAAAAAAAIAqgTAYAAAAAAAAAPwAYTAAAAAAAAAA+AHCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAH6h2YfCkSZPUsmVLRUZGKjIyUu3atdOcOXO88/Py8jRkyBDFxsYqPDxcvXv31p49e3zYYgAAAAAAAADwvWoXBteuXVtPPfWUfvnlF/3888/q3LmzrrjiCv3++++SpBEjRuizzz7TjBkztHjxYu3cuVNXXXWVj1sNAAAAAAAAAL7l9HUDyqtnz57FHj/xxBOaNGmSli1bptq1a+vNN9/UtGnT1LlzZ0nS5MmT1axZMy1btkznnnuuL5oMAAAAAAAAAD5X7cLgw3k8Hs2YMUPZ2dlq166dfvnlF7ndbnXp0sW7TNOmTVWnTh0tXbr0qGGwy+WSy+XyPs7IyJAkGYYhwzAq9kkcwTAMmaZZ6fu1KsPgWPoS9QwroZ5hJdQzrIR6htVQ07AS6hlWUpZ6rg61Xi3D4NWrV6tdu3bKy8tTeHi4Zs2apebNm2vlypUKDAxUdHR0seUTEhK0e/fuo25v7NixGj16dInp+/btU15e3qlu/jEZhqH09HSZpim7vdqN4lFlFLjdkqSDBw4oIJLj6CvUM6yEeoaVUM+wEuoZVkNNw0qoZ1hJWeo5MzOzkltVftUyDD7ttNO0cuVKpaen66OPPtKAAQO0ePHiE97eqFGjdNddd3kfZ2RkKCUlRXFxcYqMjDwVTS4zwzBks9kUFxfHG+VJcAYESJJqxMYqPj7ex63xX9QzrIR6hpVQz7AS6hlWQ03DSqhnWElZ6jk4OLiSW1V+1TIMDgwMVKNGjSRJrVu31k8//aQXXnhB1157rfLz85WWllasd/CePXuUmJh41O0FBQUpKCioxHS73e6TNyubzeazfVuN3W7jOPoY9QwroZ5hJdQzrIR6htVQ07AS6hlWcrx6rg51XvVbWAaGYcjlcql169YKCAjQggULvPPWrl2rrVu3ql27dj5sIQAAAAAAAAD4VrXrGTxq1Cj16NFDderUUWZmpqZNm6ZvvvlG8+bNU1RUlAYOHKi77rpLNWrUUGRkpIYNG6Z27dod9eZxAAAAAAAAAOAPql0YvHfvXvXv31+7du1SVFSUWrZsqXnz5qlr166SpPHjx8tut6t3795yuVzq3r27XnnlFR+3GgAAAAAAAAB8q9qFwW+++eYx5wcHB+vll1/Wyy+/XEktQlVms9l83QQAAAAAAACgSrDEmMEAAAAAAAAAgGMjDAYAAAAAAAAAP0AYDAAAAAAAAAB+gDAYAAAAAAAAAPwAYTAAAAAAAAAA+AHCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMAAAAAAAAAH6AMBgAAAAAAAAA/ABhMAAAAAAAAAD4AcJgAAAAAAAAAPADhMEAAAAAAAAA4AcIg2Fppmn6ugkAAAAAAABAlUAYDAAAAAAAAAB+gDAYAAAAAAAAAPwAYTAAAAAAAAAA+AHCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMS7PZbL5uAgAAAAAAAFAlEAYDAAAAAAAAgB8gDAYAAAAAAAAAP0AYDAAAAAAAAAB+gDAYAAAAAAAAAPwAYTAAAAAAAAAA+AHCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA9UuzB47Nixatu2rSIiIhQfH69evXpp7dq1xZbp1KmTbDZbsZ/bbrvNRy0GAAAAAAAAAN+rdmHw4sWLNWTIEC1btkzz58+X2+1Wt27dlJ2dXWy5QYMGadeuXd6fp59+2kctBgAAAAAAAADfc/q6AeU1d+7cYo+nTJmi+Ph4/fLLL7rgggu800NDQ5WYmFjZzQMAAAAAAACAKqnahcFHSk9PlyTVqFGj2PSpU6fqvffeU2Jionr27KmHHnpIoaGhpW7D5XLJ5XJ5H2dkZEiSDMOQYRgV1PLSGYYh0zQrfb9W5YvXEP+inmEl1DOshHqGlVDPsBpqGlZCPcNKylLP1aHWq3UYbBiG7rzzTp1//vk6/fTTvdP79eununXrKjk5WatWrdJ9992ntWvXaubMmaVuZ+zYsRo9enSJ6fv27VNeXl6Ftb80hmEoPT1dpmnKbq92o3hUGQVutyTpwIEDckZwHH2FeoaVUM+wEuoZVkI9w2qoaVgJ9QwrKUs9Z2ZmVnKryq9ah8FDhgzRmjVrtGTJkmLTb7nlFu//zzjjDCUlJemiiy7Sxo0b1bBhwxLbGTVqlO666y7v44yMDKWkpCguLk6RkZEV9wRKYRiGbDab4uLieKM8Cc6AAElSbGys4uPjfdwa/0U9w0qoZ1gJ9QwroZ5hNdQ0rIR6hpWUpZ6Dg4MruVXlV23D4KFDh+rzzz/Xt99+q9q1ax9z2dTUVEnShg0bSg2Dg4KCFBQUVGK63W73yZuVzWbz2b6thuPoe9QzrIR6hpVQz7AS6hlWQ03DSqhnWMnx6rk61Hm1C4NN09SwYcM0a9YsffPNN6pfv/5x11m5cqUkKSkpqYJbBwAAAAAAAABVU7ULg4cMGaJp06bpk08+UUREhHbv3i1JioqKUkhIiDZu3Khp06bpkksuUWxsrFatWqURI0boggsuUMuWLX3cegAAAAAAAADwjWoXBk+aNEmS1KlTp2LTJ0+erBtvvFGBgYH6+uuvNWHCBGVnZyslJUW9e/fWgw8+6IPWAgAAAAAAAEDVUO3CYNM0jzk/JSVFixcvrqTWAAAAAAAAAED1UPVHNQYAAAAAAAAAnDTCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMAAAAAAAAAH6AMBgAAAAAAAAA/ABhMAAAAAAAAAD4AcJgAAAAAAAAAPADhMEAAAAAAAAA4AcIgwEAAAAAAADADxAGAwAAAAAAAIAfIAwGAAAAAAAAAD9AGAwAAAAAAAAAfoAwGAAAAAAAAAD8AGEwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDAQAAAAAAAMAPEAYDAAAAAAAAgB8gDAYAAAAAAAAAP0AYDAAAAAAAAAB+gDAYAAAAAAAAAPwAYTAAAAAAAAAA+AHCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMS7PZbL5uAgAAAAAAAFAlEAYDAAAAAAAAgB8gDAYAAAAAAAAAP0AYDAAAAAAAAAB+oNqFwWPHjlXbtm0VERGh+Ph49erVS2vXri22TF5enoYMGaLY2FiFh4erd+/e2rNnj49aDAAAAAAAAAC+V+3C4MWLF2vIkCFatmyZ5s+fL7fbrW7duik7O9u7zIgRI/TZZ59pxowZWrx4sXbu3KmrrrrKh60GAAAAAAAAAN9y+roB5TV37txij6dMmaL4+Hj98ssvuuCCC5Senq4333xT06ZNU+fOnSVJkydPVrNmzbRs2TKde+65vmg2AAAAAAAAAPhUpYXB9erV080336wbb7xRderUOWXbTU9PlyTVqFFDkvTLL7/I7XarS5cu3mWaNm2qOnXqaOnSpaWGwS6XSy6Xy/s4IyNDkmQYhgzDOGVtLQvDMGSaZqXv16p88RriX9QzrIR6hpVQz7AS6hlWQ03DSqhnWElZ6rk61HqlhcF33nmnpkyZojFjxujCCy/UwIEDdeWVVyooKOiEt2kYhu68806df/75Ov300yVJu3fvVmBgoKKjo4stm5CQoN27d5e6nbFjx2r06NElpu/bt095eXkn3L4TYRiG0tPTZZqm7PZqN4pHlVHgdkuS9u/fL0e4zcet8V/UM6yEeoaVUM+wEuoZVkNNw0qoZ1hJWeo5MzOzkltVfpUaBt9555369ddfNWXKFA0bNkyDBw9Wv379dPPNN+vss88u9zaHDBmiNWvWaMmSJSfVtlGjRumuu+7yPs7IyFBKSori4uIUGRl5UtsuL8MwZLPZFBcXxxvlSXAGBEiSYmNjFR8f7+PW+C/qGVZCPcNKqGdYCfUMq6GmYSXUM6ykLPUcHBxcya0qv0ofM/jss8/W2Wefreeee06vvPKK7rvvPk2aNElnnHGGhg8frptuukk22/F7cg4dOlSff/65vv32W9WuXds7PTExUfn5+UpLSyvWO3jPnj1KTEwsdVtBQUGl9lC22+0+ebOy2Ww+27fVcBx9j3qGlVDPsBLqGVZCPcNqqGlYCfUMKzlePVeHOq/0Frrdbk2fPl2XX3657r77brVp00ZvvPGGevfurQceeEDXXXfdMdc3TVNDhw7VrFmztHDhQtWvX7/Y/NatWysgIEALFizwTlu7dq22bt2qdu3aVchzAgAAAAAAAICqrtJ6Bv/666+aPHmy3n//fdntdvXv31/jx49X06ZNvctceeWVatu27TG3M2TIEE2bNk2ffPKJIiIivOMAR0VFKSQkRFFRURo4cKDuuusu1ahRQ5GRkRo2bJjatWtX6s3jAAAAAAAAAMAfVFoY3LZtW3Xt2lWTJk1Sr169FPDPmK6Hq1+/vvr06XPM7UyaNEmS1KlTp2LTJ0+erBtvvFGSNH78eNntdvXu3Vsul0vdu3fXK6+8ckqeBwAAAAAAAABUR5UWBv/999+qW7fuMZcJCwvT5MmTj7mMaZrH3VdwcLBefvllvfzyy+VqIwAAAAAAAABYVaWNGXzhhRfqwIEDJaanpaWpQYMGldUMAAAAAAAAAPBLlRYGb968WR6Pp8R0l8ulHTt2VFYzAAAAAAAAAMAvVfgwEZ9++qn3//PmzVNUVJT3scfj0YIFC1SvXr2KbgYAAAAAAAAA+LUKD4N79eolSbLZbBowYECxeQEBAapXr56ee+65im4GAAAAAAAAAPi1Cg+DDcOQJNWvX18//fSTatasWdG7BAAAAAAAAAAcocLD4CKbNm2qrF0BAAAAAAAAAI5QoWHwiy++qFtuuUXBwcF68cUXj7ns8OHDK7IpAAAAAAAAAODXKjQMHj9+vK677joFBwdr/PjxR13OZrMRBgMAAAAAAABABarQMPjwoSEYJgIAAAAAAAAAfMfu6wYAAAAAAAAAACpepd1AzuPxaMqUKVqwYIH27t0rwzCKzV+4cGFlNQV+xGaz+boJAAAAAAAAQJVQaWHwHXfcoSlTpujSSy/V6aefTkgHAAAAAAAAAJWo0sLgDz74QNOnT9cll1xSWbsEAAAAAAAAAPyj0sYMDgwMVKNGjSprdwAAAAAAAACAw1RaGHz33XfrhRdekGmalbVLAAAAAAAAAMA/Km2YiCVLlmjRokWaM2eOWrRooYCAgGLzZ86cWVlNAQAAAAAAAAC/U2lhcHR0tK688srK2h0AAAAAAAAA4DCVFgZPnjy5snYFAAAAAAAAADhCpY0ZDAAAAAAAAADwnQrtGXz22WdrwYIFiomJ0VlnnSWbzXbUZX/99deKbAoAAAAAAAAA+LUKDYOvuOIKBQUFSZJ69epVkbsCAAAAAAAAABxDhYbBjzzySKn/BwAAAAAAAABULsYMBgAAAAAAAAA/UKE9g2NiYo45TvDhDh48WJFNAQAAAAAAAAC/VqFh8IQJEypy8wAAAAAAAACAMqrQMHjAgAEVuXkAAAAAAAAAQBlVaBh8NHl5ecrPzy82LTIy0hdNgcWZpunrJgAAAAAAAABVQqXdQC47O1tDhw5VfHy8wsLCFBMTU+wHAAAAAAAAAFBxKi0MHjlypBYuXKhJkyYpKChIb7zxhkaPHq3k5GS98847ldUMAAAAAAAAAPBLlTZMxGeffaZ33nlHnTp10k033aQOHTqoUaNGqlu3rqZOnarrrruuspoCAAAAAAAAAH6n0noGHzx4UA0aNJBUOD7wwYMHJUnt27fXt99+W1nNAAAAAAAAAAC/VGlhcIMGDbRp0yZJUtOmTTV9+nRJhT2Go6OjK6sZAAAAAAAAAOCXKi0Mvummm/Tbb79Jku6//369/PLLCg4O1ogRI3TvvfdWVjMAAAAAAAAAwC9VWhg8YsQIDR8+XJLUpUsX/fXXX5o2bZpWrFihO+64o8zb+fbbb9WzZ08lJyfLZrNp9uzZxebfeOONstlsxX4uvvjiU/lUAAAAAAAAAKDaqfAweOnSpfr888+LTSu6kdxtt92ml156SS6Xq8zby87OVqtWrfTyyy8fdZmLL75Yu3bt8v68//77J9x+AAAAAAAAALACZ0XvYMyYMerUqZMuu+wySdLq1as1cOBA3XjjjWrevLmefvppJScn69FHHy3T9nr06KEePXocc5mgoCAlJiaebNNhATabzddNAAAAAAAAAKqECg+DV65cqccee8z7+IMPPlBqaqr+97//SZJq166tRx55pMxhcFl88803io+PV0xMjDp37qzHH39csbGxR13e5XIV652ckZEhSTIMQ4ZhnLJ2lYVhGDJNs9L3a1W+eA3xL+oZVkI9w0qoZ1gJ9QyroaZhJdQzrKQs9Vwdar3Cw+BDhw4pISHB+3jx4sXFeva2bdtW27ZtO2X7u/jii3XVVVepfv362rhxox544AH16NFDS5culcPhKHWdsWPHavTo0SWm79u3T3l5eaesbWVhGIbS09Nlmqbs9kob0tlyCtxuSdKBAwfkCKd3sK9Qz7AS6hlWQj3DSqhnWA01DSuhnmElZannzMzMSm5V+VV4GJyQkKBNmzYpJSVF+fn5+vXXX4sFr5mZmQoICDhl++vTp4/3/2eccYZatmyphg0b6ptvvtFFF11U6jqjRo3SXXfd5X2ckZGhlJQUxcXFKTIy8pS1rSwMw5DNZlNcXBxvlCfB+U9NxcbGKj4+3set8V/UM6yEeoaVUM+wEuoZVkNNw0qoZ1hJWeo5ODi4kltVfhUeBl9yySW6//77NW7cOM2ePVuhoaHq0KGDd/6qVavUsGHDCtt/gwYNVLNmTW3YsOGoYXBQUJCCgoJKTLfb7T55s7LZbD7bt9VwHH2PeoaVUM+wEuoZVkI9w2qoaVgJ9QwrOV49V4c6r/Aw+LHHHtNVV12ljh07Kjw8XG+//bYCAwO989966y1169atwva/fft2HThwQElJSRW2DwAAAAAAAACo6io8DK5Zs6a+/fZbpaenKzw8vMS4vTNmzFB4eHiZt5eVlaUNGzZ4H2/atEkrV65UjRo1VKNGDY0ePVq9e/dWYmKiNm7cqJEjR6pRo0bq3r37KXtOAAAAAAAAAFDdVHgYXCQqKqrU6TVq1CjXdn7++WddeOGF3sdFY/0OGDBAkyZN0qpVq/T2228rLS1NycnJ6tatmx577LFSh4EAAAAAAAAAAH9RaWHwqdKpUyeZpnnU+fPmzavE1gAAAAAAAABA9VD1RzUGAAAAAAAAAJw0wmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDAQAAAAAAAMAPEAYDAAAAAAAAgB8gDAYAAAAAAAAAP0AYDAAAAAAAAAB+gDAYAAAAAAAAAPwAYTAAAAAAAAAA+AHCYAAAAAAAAADwA4TBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMAAAAAAAAAH6AMBiWFlkzwtdNAAAAAAAAAKoEwmBYUuOz6kuSwiJDfdwSAAAAAAAAoGogDIYl2ex2hUWG+LoZAAAAAAAAQJVBGAwAAAAAAAAAfoAwGAAAAAAAAAD8AGEwrMtm83ULAAAAAAAAgCqDMBgAAAAAAAAA/ABhMKzJNH3dAgAAAAAAAKBKIQwGAAAAAAAAAD9AGAwAAAAAAAAAfoAwGAAAAAAAAAD8AGEwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDAQAAAAAAAMAPEAYDAAAAAAAAgB8gDIZl2Ww2XzcBAAAAAAAAqDIIg2FJpmn6ugkAAAAAAABAlUIYDAAAAAAAAAB+oNqFwd9++6169uyp5ORk2Ww2zZ49u9h80zT18MMPKykpSSEhIerSpYvWr1/vm8YCAAAAAAAAQBVR7cLg7OxstWrVSi+//HKp859++mm9+OKLevXVV7V8+XKFhYWpe/fuysvLq+SWAgAAAAAAAEDV4fR1A8qrR48e6tGjR6nzTNPUhAkT9OCDD+qKK66QJL3zzjtKSEjQ7Nmz1adPn8psKgAAAAAAAABUGdUuDD6WTZs2affu3erSpYt3WlRUlFJTU7V06dKjhsEul0sul8v7OCMjQ5JkGIYMw6jYRh/BMAyZplnp+7UaU+I4VgHUM6yEeoaVUM+wEuoZVkNNw0qoZ1hJWeq5OtS6pcLg3bt3S5ISEhKKTU9ISPDOK83YsWM1evToEtP37dtX6cNLGIah9PR0maYpu73ajeJRZeTm5sqdn6+9e/f6uil+jXqGlVDPsBLqGVZCPcNqqGlYCfUMKylLPWdmZlZyq8rPUmHwiRo1apTuuusu7+OMjAylpKQoLi5OkZGRldoWwzBks9kUFxfHG+VJCAkJUUBgoOLj433dFL9GPcNKqGdYCfUMK6GeYTXUNKyEeoaVlKWeg4ODK7lV5WepMDgxMVGStGfPHiUlJXmn79mzR2eeeeZR1wsKClJQUFCJ6Xa73SdvVjabzWf7tgqb/j2O8C3qGVZCPcNKqGdYCfUMq6GmYSXUM6zkePVcHeq86rewHOrXr6/ExEQtWLDAOy0jI0PLly9Xu3btfNgy+ILN5usWAAAAAAAAAFVHtesZnJWVpQ0bNngfb9q0SStXrlSNGjVUp04d3XnnnXr88cfVuHFj1a9fXw899JCSk5PVq1cv3zUaAAAAAAAAAHys2oXBP//8sy688ELv46KxfgcMGKApU6Zo5MiRys7O1i233KK0tDS1b99ec+fOrRZjdgAAAAAAAABARal2YXCnTp1kmuZR59tsNo0ZM0ZjxoypxFYBAAAAAAAAQNVmqTGDAQAAAAAAAAClIwwGAAAAAAAAAD9AGAwAAAAAAAAAfoAwGAAAAAAAAAD8AGEwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDYV02m69bAAAAAAAAAFQZhMGwJNP0dQsAAAAAAACAqoUwGAAAAAAAAAD8AGEwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDAQAAAAAAAMAPEAYDAAAAAAAAgB8gDAYAAAAAAAAAP0AYDAAAAAAAAAB+gDAYAAAAAAAAAPwAYTAsyTRNXzcBAAAAAAAAqFIIgwEAAAAAAADADxAGAwAAAAAAAIAfIAwGAAAAAAAAAD9AGAwAAAAAAAAAfoAwGAAAAAAAAAD8AGEwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDAQAAAAAAAMAPEAYDAAAAAAAAgB8gDIY1maZsNpuvWwEAAAAAAABUGYTBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAH7BkGPzoo4/KZrMV+2natKmvmwUAAAAAAAAAPuP0dQMqSosWLfT11197Hzudln2qAAAAAAAAAHBclk1InU6nEhMTfd0MAAAAAAAAAKgSLBsGr1+/XsnJyQoODla7du00duxY1alTp9RlXS6XXC6X93FGRoYkyTAMGYZRKe0tYhiGTNOs9P1ajSlJHEefo55hJdQzrIR6hpVQz7AaahpWQj3DSspSz9Wh1i0ZBqempmrKlCk67bTTtGvXLo0ePVodOnTQmjVrFBERUWL5sWPHavTo0SWm79u3T3l5eZXRZC/DMJSeni7TNGW3W3JI50qRm5ur/Px87d2719dN8WvUM6yEeoaVUM+wEuoZVkNNw0qoZ1hJWeo5MzOzkltVfpYMg3v06OH9f8uWLZWamqq6detq+vTpGjhwYInlR40apbvuusv7OCMjQykpKYqLi1NkZGSltLmIYRiy2WyKi4vjjfIkhISEKDswR/Hx8b5uil+jnmEl1DOshHqGlVDPsBpqGlZCPcNKylLPwcHBldyq8rNkGHyk6OhoNWnSRBs2bCh1flBQkIKCgkpMt9vtPnmzstlsPtu3ZZiSzW7jGFYB1DOshHqGlVDPsBLqGVZDTcNKqGdYyfHquTrUedVv4SmQlZWljRs3KikpyddNAQAAAAAAAACfsGQYfM8992jx4sXavHmzfvjhB1155ZVyOBzq27evr5sGAAAAAAAAAD5hyWEitm/frr59++rAgQOKi4tT+/bttWzZMsXFxfm6aQAAAAAAAADgE5YMgz/44ANfNwEAAAAAAAAAqhRLDhMBAAAAAAAAACiOMBgAAAAAAAAA/ABhMAAAAAAAAAD4AcJgAAAAAAAAAPADhMEAAAAAAAAA4AcIgwEAAAAAAADADxAGw7JsNpuvmwAAAAAAAABUGYTBAAAAAAAAAOAHCIMBAAAAAAAAwA8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMAAAAAAAAAH6AMBgAAAAAAAAA/ABhMAAAAAAAAAD4AcJgAAAAAAAAAPADhMEAAAAAAAAA4AcIg2FJpkxfNwEAAAAAAACoUgiDYV02m69bAAAAAAAAAFQZhMEAAAAAAAAA4AcIgwEAAAAAAADADxAGAwAAAAAAAIAfIAwGAAAAAAAAAD9AGAwAAAAAAAAAfoAwGAAAAAAAAAD8AGEwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwbAk0zR93QQAAAAAAACgSiEMBgAAAAAAAAA/QBgMAAAAAAAAAH6AMBgAAAAAAAAA/ABhMAAAAAAAAAD4AcJgAAAAAAAAAPADhMEAAAAAAAAA4AcIgwEAAAAAAADADxAGAwAAAAAAAIAfIAwGAAAAAAAAAD/g9HUD4Fubf9+mjAOZp2RbNputDMuUaUMnva/czLwy7AgAAAAAAADwH4TBpTBNU5KUkZFR6fs2DEOZmZkKDg6W3V7xHbdnvfK5fl+6tsL34wtxtWN98hriX5Vdz0BFop5hJdQzrIR6htVQ07AS6hlWUpZ6LsqhirLFqshmVuXW+cj27duVkpLi62YAAAAAAAAAqGa2bdum2rVr+7oZpSIMLoVhGNq5c6ciIiLKNPTBqZSRkaGUlBRt27ZNkZGRlbpv4FSjnmEl1DOshHqGlVDPsBpqGlZCPcNKylLPpmkqMzNTycnJVbY3PMNElMJut/s8vY+MjOSNEpZBPcNKqGdYCfUMK6GeYTXUNKyEeoaVHK+eo6KiKrE15Vc1I2oAAAAAAAAAwClFGAwAAAAAAAAAfoAwuIoJCgrSI488oqCgIF83BThp1DOshHqGlVDPsBLqGVZDTcNKqGdYiVXqmRvIAQAAAAAAAIAfoGcwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDAQAAAAAAAMAPEAYDAAAAAAAAgB8gDAYAAAAAAAAAP0AYDAAAAJygzZs3y2az6dlnnz3uso8++qhsNlsltKqkb775RjabTd98880p2d6NN96oevXqnZJtVUXlea1sNpseffTRim0QAADAKUIYDAAAcAxTpkyRzWbz/gQHB6tJkyYaOnSo9uzZ4+vm+R2Px6PJkyerU6dOqlGjhoKCglSvXj3ddNNN+vnnn33dvGrt8Do/1s+pCpQrwt69e3X//ffrjDPOUHh4uIKDg9WoUSPddNNNWrJkia+bBwAA4HNOXzcAAACgOhgzZozq16+vvLw8LVmyRJMmTdKXX36pNWvWKDQ01NfN8wu5ubm66qqrNHfuXF1wwQV64IEHVKNGDW3evFnTp0/X22+/ra1bt6p27dq+bmqpHnzwQd1///2+bsZRvfvuu8Uev/POO5o/f36J6c2aNdP//vc/GYZRmc07rh9//FGXXnqpMjMz1adPH912220KCgrSpk2bNHv2bE2ZMkWLFy/WBRdccNxtVfXXCgAA4EQRBgMAAJRBjx491KZNG0nSf//7X8XGxur555/XJ598or59+5a6TnZ2tsLCwiqzmSfFNE3l5eUpJCTE100p1b333qu5c+dq/PjxuvPOO4vNe+SRRzR+/HjfNKyMnE6nnM6qe/p9/fXXF3u8bNkyzZ8/v8T0qujQoUPq1auXnE6nVq5cqaZNmxab//jjj+uDDz44bm0X/c5W9dcKAADgRDFMBAAAwAno3LmzJGnTpk2SCsdQDQ8P18aNG3XJJZcoIiJC1113nSTJMAxNmDBBLVq0UHBwsBISEnTrrbfq0KFDxbb5888/q3v37qpZs6ZCQkJUv3593XzzzcWW+eCDD9S6dWtFREQoMjJSZ5xxhl544QXv/KONdVo03MXmzZu90+rVq6fLLrtM8+bNU5s2bRQSEqLXXntNkpSWlqY777xTKSkpCgoKUqNGjTRu3Dif9Qbdvn27XnvtNXXt2rVEECxJDodD99xzT7FewStWrFCPHj0UGRmp8PBwXXTRRVq2bFmx9YqOy5IlSzR8+HDFxcUpOjpat956q/Lz85WWlqb+/fsrJiZGMTExGjlypEzTLLWN48ePV926dRUSEqKOHTtqzZo1xeaX9trYbDYNHTpUs2fP1umnn66goCC1aNFCc+fOLbH9HTt26Oabb1ZCQoJ3ubfeeqvUY9WrVy+FhYUpPj5eI0aMkMvlOuqxPRFHjhl8+NjJL7/8sho0aKDQ0FB169ZN27Ztk2maeuyxx1S7dm2FhIToiiuu0MGDB0tsd86cOerQoYPCwsIUERGhSy+9VL///vtx2/Pqq69q165dmjBhQokgWCo8zn379lXbtm2904pejz/++EP9+vVTTEyM2rdvX2ze4Vwul0aMGKG4uDhFRETo8ssv1/bt28t6yAAAAKoELncDAACcgI0bN0qSYmNjvdMKCgrUvXt3tW/fXs8++6x3+Ihbb71VU6ZM0U033aThw4dr06ZNeumll7RixQp9//33CggI0N69e9WtWzfFxcXp/vvvV3R0tDZv3qyZM2d6tz9//nz17dtXF110kcaNGydJ+vPPP/X999/rjjvuOKHnsXbtWvXt21e33nqrBg0apNNOO005OTnq2LGjduzYoVtvvVV16tTRDz/8oFGjRnkDt8o2Z84cFRQU6IYbbijT8r///rs6dOigyMhIjRw5UgEBAXrttdfUqVMnLV68WKmpqcWWHzZsmBITEzV69GgtW7ZMr7/+uqKjo/XDDz+oTp06evLJJ/Xll1/qmWee0emnn67+/fsXW/+dd95RZmamhgwZory8PL3wwgvq3LmzVq9erYSEhGO2dcmSJZo5c6YGDx6siIgIvfjii+rdu7e2bt3qra89e/bo3HPP9YbHcXFxmjNnjgYOHKiMjAxvQJ6bm6uLLrpIW7du1fDhw5WcnKx3331XCxcuLOORPjlTp05Vfn6+hg0bpoMHD+rpp5/WNddco86dO+ubb77Rfffdpw0bNmjixIm65557ioXZ7777rgYMGKDu3btr3LhxysnJ0aRJk9S+fXutWLHimDes++yzzxQSEqKrrrqq3G3+z3/+o8aNG+vJJ588atAvFX4j4L333lO/fv103nnnaeHChbr00kvLvT8AAACfMgEAAHBUkydPNiWZX3/9tblv3z5z27Zt5gcffGDGxsaaISEh5vbt203TNM0BAwaYksz777+/2PrfffedKcmcOnVqselz584tNn3WrFmmJPOnn346alvuuOMOMzIy0iwoKDjqMo888ohZ2ile0fPYtGmTd1rdunVNSebcuXOLLfvYY4+ZYWFh5rp164pNv//++02Hw2Fu3br1qPuvKCNGjDAlmStWrCjT8r169TIDAwPNjRs3eqft3LnTjIiIMC+44ALvtKLj0r17d9MwDO/0du3amTabzbztttu80woKCszatWubHTt29E7btGmTKalYLZimaS5fvtyUZI4YMcI7rbTXRpIZGBhobtiwwTvtt99+MyWZEydO9E4bOHCgmZSUZO7fv7/Y+n369DGjoqLMnJwc0zRNc8KECaYkc/r06d5lsrOzzUaNGpmSzEWLFh332BUZMmRIqbVkmoX1Xrdu3RLHIS4uzkxLS/NOHzVqlCnJbNWqlel2u73T+/btawYGBpp5eXmmaZpmZmamGR0dbQ4aNKjYfnbv3m1GRUWVmH6kmJgY88wzzywxPSMjw9y3b5/3Jysryzuv6PXo27dvifWOfK1WrlxpSjIHDx5cbLl+/fqZksxHHnnkmO0DAACoKhgmAgAAoAy6dOmiuLg4paSkqE+fPgoPD9esWbNUq1atYsvdfvvtxR7PmDFDUVFR6tq1q/bv3+/9ad26tcLDw7Vo0SJJUnR0tCTp888/l9vtLrUN0dHRys7O1vz580/Z86pfv766d+9eos0dOnRQTExMsTZ36dJFHo9H33777Snbf1llZGRIkiIiIo67rMfj0VdffaVevXqpQYMG3ulJSUnq16+flixZ4t1ekYEDBxYbFiA1NVWmaWrgwIHeaQ6HQ23atNHff/9dYp+9evUqVgvnnHOOUlNT9eWXXx63vV26dFHDhg29j1u2bKnIyEjvfkzT1Mcff6yePXvKNM1ir0n37t2Vnp6uX3/9VZL05ZdfKikpSVdffbV3e6GhobrllluO245T4T//+Y+ioqK8j4t6YF9//fXFxuBNTU1Vfn6+duzYIamw13taWpr69u1b7Pk5HA6lpqZ6f0+OJiMjQ+Hh4SWm33DDDYqLi/P+3HfffSWWue222477vIpex+HDhxebXtqQJQAAAFUZw0QAAACUwcsvv6wmTZrI6XQqISFBp512muz24tfVnU5nsTFrJWn9+vVKT09XfHx8qdvdu3evJKljx47q3bu3Ro8erfHjx6tTp07q1auX+vXrp6CgIEnS4MGDNX36dPXo0UO1atVSt27ddM011+jiiy8+4edVv379EtPWr1+vVatWKS4u7phtLk16erpyc3NPqC1RUVFHvcFXZGSkJCkzM/O429m3b59ycnJ02mmnlZjXrFkzGYahbdu2qUWLFt7pderUKdEWSUpJSSkx/cixniWpcePGJaY1adJE06dPP257j9y3JMXExHj3s2/fPqWlpen111/X66+/Xuo2il6TLVu2qFGjRiXGuy3tWFSE8hxHSd7nuH79ekn/jsV9pKLX/2giIiKUlZVVYvqYMWM0dOhQSVLXrl1LXbe034EjbdmyRXa7vVhoL1XecQUAADhVCIMBAADK4JxzzlGbNm2OuUxQUFCJgNgwDMXHx2vq1KmlrlMUuNpsNn300UdatmyZPvvsM82bN08333yznnvuOS1btkzh4eGKj4/XypUrNW/ePM2ZM0dz5szR5MmT1b9/f7399tve7ZTG4/GUOr208NUwDHXt2lUjR44sdZ0mTZqUfgAk3XHHHd62lNfkyZN14403ljqv6KZgq1ev1plnnnlC2z8Wh8NR5unmMcaVPZX7LtpP0U37rr/+eg0YMKDUZVu2bHlK23SiynMcpZLP8d1331ViYmKJ5Q7vVVyapk2b6rfffpPb7VZAQIB3elmOy9EuQAAAAFgRYTAAAEAFatiwob7++mudf/75ZQqdzj33XJ177rl64oknNG3aNF133XX64IMP9N///leSFBgYqJ49e6pnz54yDEODBw/Wa6+9poceekiNGjVSTEyMJCktLc079IRU2LOxPG3OyspSly5dyvdkJY0cOVLXX399udeTVKyn7pF69Oghh8Oh995777g3kYuLi1NoaKjWrl1bYt5ff/0lu91eoqfqySrq2Xq4devWHfOmZ2UVFxeniIgIeTye474mdevW1Zo1a2SaZrELA6Udi6qkqMdtfHz8CdXdZZddpmXLlmnWrFm65pprTnXzVLduXRmGoY0bNxbrDVzVjysAAMCRGDMYAACgAl1zzTXyeDx67LHHSswrKChQWlqapMKvyx/Z47SoB6zL5ZIkHThwoNh8u93u7flYtExRqHb4uL7Z2dnl6q17zTXXaOnSpZo3b16JeWlpaSooKDjqus2bN1eXLl1O6CcpKemo201JSdGgQYP01VdfaeLEiSXmG4ah5557Ttu3b5fD4VC3bt30ySefaPPmzd5l9uzZo2nTpql9+/bHHXagvGbPnu0d/1aSfvzxRy1fvlw9evQ46W07HA717t1bH3/8sdasWVNi/r59+7z/v+SSS7Rz50599NFH3mk5OTlHHV6iqujevbsiIyP15JNPljpm9uHPsTS33367EhISNGLECK1bt67E/JPtzV30Or744ovFpk+YMOGktgsAAFDZ6BkMAABQgTp27Khbb71VY8eO1cqVK9WtWzcFBARo/fr1mjFjhl544QVdffXVevvtt/XKK6/oyiuvVMOGDZWZman//e9/ioyM1CWXXCJJ+u9//6uDBw+qc+fOql27trZs2aKJEyfqzDPPVLNmzSRJ3bp1U506dTRw4EDde++9cjgceuuttxQXF6etW7eWqc333nuvPv30U1122WW68cYb1bp1a2VnZ2v16tX66KOPtHnzZtWsWbPCjtnRPPfcc9q4caOGDx+umTNn6rLLLlNMTIy2bt2qGTNm6K+//lKfPn0kSY8//rjmz5+v9u3ba/DgwXI6nXrttdfkcrn09NNPn/K2NWrUSO3bt9ftt98ul8ulCRMmKDY29qhDbZTXU089pUWLFik1NVWDBg1S8+bNdfDgQf3666/6+uuvdfDgQUnSoEGD9NJLL6l///765ZdflJSUpHfffVehoaGnpB0VJTIyUpMmTdINN9ygs88+W3369PHW7BdffKHzzz9fL7300lHXr1GjhmbNmqWePXuqVatW6tOnj9q2bauAgABt27ZNM2bMkFT6+MxlceaZZ6pv37565ZVXlJ6ervPOO08LFizQhg0bTmh7AAAAvkIYDAAAUMFeffVVtW7dWq+99poeeOABOZ1O1atXT9dff73OP/98SYWh8Y8//qgPPvhAe/bsUVRUlM455xxNnTrVe4Or66+/Xq+//rpeeeUVpaWlKTExUddee60effRR71jFAQEBmjVrlgYPHqyHHnpIiYmJuvPOOxUTE6ObbrqpTO0NDQ3V4sWL9eSTT2rGjBl65513FBkZqSZNmmj06NHem39VttDQUM2ZM0dTpkzR22+/rccee0w5OTlKTk5W586dNXXqVNWqVUtS4ZAT3333nUaNGqWxY8fKMAylpqbqvffeU2pq6ilvW//+/WW32zVhwgTt3btX55xzjl566aVj9nYuj4SEBP34448aM2aMZs6cqVdeeUWxsbFq0aKFxo0b510uNDRUCxYs0LBhwzRx4kSFhobquuuuU48ePU7qRoOVoV+/fkpOTtZTTz2lZ555Ri6XS7Vq1VKHDh3KVLvt2rXTmjVr9Pzzz+uLL77Qhx9+KMMwVKtWLbVv316vv/66OnTocMLtK7qoMnXqVM2ePVudO3fWF198ccqHHAEAAKhINvNU3wEDAAAAAAAAAFDlMGYwAAAAAAAAAPgBwmAAAAAAAAAA8AOEwQAAAAAAAADgBwiDAQAAAAAAAMAPEAYDAAAAAAAAgB8gDAYAAAAAAAAAP+D0dQOqIsMwtHPnTkVERMhms/m6OQAAAAAAAACqONM0lZmZqeTkZNntVbMPLmFwKXbu3KmUlBRfNwMAAAAAAABANbNt2zbVrl3b180oFWFwKSIiIiQVvnCRkZGVum/DMLRv3z7FxcVV2SsIsBbDMHRod5p+mb9KcycvlCSd0/0sXXPfFaXWYHZ6tl4f+a4uv727GrSqJ5vNpt2b9mrLn9vU9uKziq1zquo5JzNXD/Yce8LrF3lu0Wh6++OE+eL92ZXrkttVIJvdprDIUBmGofw8t/Lz8hVZI6JS2oDCq/vlfe/wFHjkcDpkmqZM0zzlNbNjwy5t+HWTzrzodEXF/nuuknEwU2FRoXI4HMdcn/MNHM329Tv1/KBXT2ob/R64Sq27tqq0v7nUc/WUm5WrzIPZiq9TU1Lhe63hMeTKzT/p87673xysiJgwLXr/e3W5voO2/LlDOzbsVtfrL9CeLfs0bsDEcm/zvCvO0YXXnqfY5Bon1bayoKZPjeyMHOVl58kZ6NST/V5Qn/t6ae3yDQqNDtU3H34vZ4BTBe6Co64/5IWb9fIdbxWb1u+Bq5SX5VJuVq7mvLWw3G269dkBMg1DzgCHwqPD9fRNL5V7G2V12a3d1PGadsc9J6ho1DOspCz1nJGRoZSUFG+2WBXZTNM0fd2IqiYjI0NRUVFKT0/3SRi8d+9excfH80Z5CuS73Lqz/YPex49/dr9qJMb4sEVVy2+Lf9dr97xz1Pmtu7bSwCf7SZJ2/b1Hr9w5WQd2HSrTticufVI2u63Uei48MXPJ7rDLZpMK3B7VPOLE2jRNLZm5XO8/NesEntnRBQYH6NJBXdW1f8dTul1Yw5SHPtC6XzbqzldvUVZajuqfUccbZpT1/XnB1O/08YTPvY9vePg/atezTbFlVn/3pz56/jPt237gpNv8xBcPKCY+6qS3g3+Zpqm7L3xEedmuYtOfXzxGwaFBx1x31bd/6NW73y4xPaFunB6aftdx/7Z7PB7Z7XbZbDZvCO3KdWnb2p1a+unP6nLDBfrkpbla9e0f3nXueXOwouMj9WDPp0rdpsNhl8djFJt2x6RBiqwVpoSEBM43oNzsPI3sMkaeAk+Z16mRGK3HPxulz1+bry/f+Pq4y19+e3ddfHPnk2nmUXH+XPXl5bgUEOTU/u0HNfrqZ096ex3/c572bz+g9lelqlWnFsrOyFFuZq5q1oo9oe1lpWVrZNcx5V7PbrdpzCf3KaJGuAICA05o36Whpk+cx+PRsHMfOOnt/HfsdTq7S0u589264/zCz5MTlz4ph7N4sLr2pw2q07y25r21SF+9881J77ciNGndUJmHsvSfu3uq6TmNK33//lrPW//aoadueFFnXXi6khom6ss3vtbVIy5T+6tSFRgcWGnt2LBik2Y896lSL22t9H0ZumLoxbLZbHSSOkFlqWdfZoplRRhcCsJg6xjc9r5Spz/26f2KTfLvUPhox+ZISQ0SdNUdl5a4Kl5WBW63Hph6p+q1qFPmfZZFdHyUWnVsoUtv6aLw6LAS803TVNredG1avVVvjJp61O0MePQanXPJ2fwxtJgDuw5p7lsLldwwURtXbtKvC1Z75105/BI1ad1Ah/aka9+2AwoIcmr6s58edVsX9eug3iMuO+7784aVm066N93J6P/INTr3stY+279VTHtyppbMWn7U+Zfd2k2X/PeiEtMnDn1Dfy5ff9ztxyRE6YnPS35I3bFhl958YJp2b9pbvgafhAK3W6/++iznG35uy5/bNa5/6b0k737jdj3330kaNO56NW/XRL9+vVrffrRUd79xu5wBxb9gWNa/8We0b6abn+yrnMy8U3Yhi/PnqiEvx+W9YPb3qi16duArOqfHWfpxzoqT2u7LPz4l0zT105wVanXh6ce9KHeyCtwFWvb5L5r25MwTWr/vqKvU/spzTurckpr+V/r+DP29aosanlnP+62o7Iwc5ee5FRMfpe3rdurJ6144qX2EhAer6w0dFVkzQs1SGysmIbrY/C1/bJNpSvValG8oyXlTFumTl+eWuz0BgU5dMbSHmp7TSHnZLtVpVkt2h12T/+99XXT9BQoKCVRSgwRJ0odPf6JuN3ZSSHiw5r658LiBdO0mSdq+bpcCAp26+u7L1eGq1HK3r7wqup7T9qUrLCrUe0Fm19979MxNL+u/T10nR4BThsdQdnqOWl7QzBvCLp7+g+xOhzpclao/lq3TS8PeVL8HrtI5Pc7S5t+3qUnrht5vKxx5AaBIfl6+ZLMp40CmImLCFBQSpL1b9+nr977Tz/NWKi/HVep6RZq0bqg7Jg065Z9Dc7Pz9O6j07Xym9/LtPxVd1yqBi3rqkHLuqe0HVZFGGxhhMHW8Xif57Vz455jLjNx6ZM6sPOgDu3N0GltGlZSyypXdkaOXr7jLW1es63U+UkNEhQUEqiRU4ZKKuwd8fygSdq9eV+JZU9r01B3TLpF2enZeuTKZ5STmavBE25Ss3Mb66/lG0qExgVut5wBJ9dTIuW0ZN39xu0nfAV119979Ni1zx93uf97/07VapR0QvuAb5mmqbcf/lA/zj25D5zH0v3GTkrtfVaJ9+fMQ1m6r9tjFbLP6x+8WqmXnq3crDyN7DpGF157vpqd21hz3lqoTau3HnW9a++9QqmXtVbGgUzF1Y7lYkcZHdqbrv+79MkS01MvOVvLv/y1XNtq2/1M/TRvpSTp6hGX6aPxnx97hXJqfm4TDZ04UC8Pf0u/L13rnX7v5CE6tDvNexGsTtNa2vrXDkmFF9ECgwO0d+t+Sf++P198U2f1vL0bdeJndm3ao4XTluj72T+WmHf+Fefostu6KqrmiZ0HL/3sZ707ZkaZlm3dpaX+c8/lysvOU0hEiJyBToWEBZdrf5w/+4Zpmvp+9o8nHJr2e+AqOQOcemf0dDU/t4lqNU7S/HcX6+43bvd+M6cihtkpL0+BR7s379WO9bs15eEPJBWGde78ow8vcLhzepyl83udo8ZnNyjzPqnpQpMffN/7t/Rk9bi5s0xTOveys1Xzn3Ojyv67ZxiG5k1epHaXt1FkbIT2bTsgR4CjxDckT4ZpmjIMQ3nZLv087zd9+PTsMq/b575ean9V6imvuZOt598W/66ImHA1aFlXuzfv1Zj/PKezOp+hFQtXH3/lUvR/5Bq9M3p6udaJjo9S2t70E9pfWTRLbayhEweeUE16Cjz6/LX5mjdl0SlrT3BokJ77hiEWS0MYbGGEwdYx5aEP9OPcFZrw3WMyDFN3dXz4uOs8PONu7d9+QM3PO80SX5841tXyAY9eo9RLj96TcOH7S/TR8595H5flK9JS4UnI3LcW6rNXvyoRBifUjdPDM+6WzWaTYRiy2+06sOuQfvzyV3326lfFtvP0/IdL7fV7InKz8/TZK/P0zfQfyrzOqdw/Tl7GwUzNe2uRFn34fbnXbdq2kTb/sa3E1/4Pd/1DhcGrJP00Z6UCgpx684FpxZYpy8WNoq8VZhzIVEBwgGSauvvCR73z75h0ixqfXV8Fbo8Cg07+K6X7dxzQ56/NP2bPqxbnnaZdf+/RkBdu9vYk8WeLp/+gD5/5RJI07quHZHfYZXiMYqF+nWa1dP87w4utt3Dad8cNdUsLVk3T1ON9xmvX38e+OClJtzx9gz6e8LlanNdULc47TQ1a1tHyL1eoZcfmCo0Ikc1uk+ExFBYZKunfixGxyTF67JP7S93mD5/+JI/bow69z5VU2MtqysMf6Pcf/ipRz9eO7KVmqY0UXyfuuG0tjWmaystxKTs9RzHxUUftTWMlHo9H056YqaWf/Vxs+rMLH1VoRIiPWnVsngKPhrUr3kO93wNXqdFZ9ZVQN65Czn02rd6iZ25+pVzrXDqoi36at9J7AaNu89pKveRszXlroRLqxP0THAfphtHXKC39UJU7f07bl66ompHV/lzySD9/9ZtcOS5NfeLjMq/TskMzDRhzrQrcHkXEhFdg6yqfYRgamjqqXOtcOewSte+dquDQoFLrw98+E+76e49eu/cdZadl69bnBiihbpzu7/64TjSqePnHp4oNt+TPDMPQJy/NVdPUxpo49I1yr1+rUaKGvfzfk7pXxYnWs8fj0SO9ntbB3WknvG9fuvetwarVOEmOAId2bdyj2k2SZZqmVixcozfuf++o6z084+7j/i125bo0+f/e16rv/jxmG7re0FGX3tJFAUEB3vtZGIYhh8Ohuzo+fNzey2Nmjzzh4XesijDYwgiDreOF21/X1r926LlFo73TPAUezXlzYZnGtztcWGSIUi9trbrNa6v2aclKql81A5XsjBw9fu3zSt+fWWJecGiQrhjaQ0EhgUqsH1/urzqV1+H1XJBfeBOsUzme2okwTVP7tu1XxsEsLZ6+VL/M/+246yQ1SFBWWrbu/t9tqlk7lt/NSmKaprb+tUNfv7NYv3y9qkzrXHZLVzkDnap/Rh01PrvBKfkQYJqm5k35Rp++MveYYfA9bw726derCtwFmvHsZ/pu5rLjLnt+r3PU7NwmOv380yp1zDJfW//r33pp2JvH7c314g9PlPgK/OEK3AV6sOdTyjiQqZYXNPeO31v04fNYvnxjgRq0rKPQyFDl5+VrxrOfatvanbr23ivU8Zrzyv+kVPiBICAooFzvTYZhaEjq/bLp+L8fzgCHRk29Q8Fhwdq4crOmPfHxcT88HCk4LMh7MeaCq9up0Vn11bpry2rzId3j8Wj/9oNaMPW7Yw4jcqR+D1ylxHrxanRW/Qps3bFtWLlJmQez9L/73tNZF56uFYvWlFjmgal3qHaT5EppT8aBTIXHhMlut+uzSfNO6AZMpSlwu9X47Ibeb0088fkoRcVFKjs9RwVujyJjw2Wz2U7qb7hhGDINU7lZebI77AoIcip9X4ZWLvpdM1/44pjrPjD1Dn36yjyt+f4v3ff2UCU1SNC6X/7Wvm0H1LJjc0XUCD8lFwhLa/PhnRvc+W6t/3WTGp1Zz/v+/9vi33Vgx0Gd1aWlln/+i4JCg9SqU3PvV+UL3AWacNvrysnI1Z4tJb81FlUzQp37dVDd5rX1+/drdXr7pqrbIqVCnk91UOAu0O5NezXtyZna/Hvp38o7UmxyjG4c00cNW9Xz3ni0un8mdOW6lJ/n1rLPflGTNg3096qtyk7P0R9L13qPS63GSdqxftcxt3Nmpxa65Zn+ys7I0b0XFX6mu/6hq9XozHrKzcqTw+motPev6s7j8Sg7Pcd7o9nX7nlHvy0u21ACR6rdJEnX/V9vxSRGKywyVDZ78fdXd75bBW6PQsKC5crL1759+7Rt5S41aFlX4TFh3teyWWpj5WTmqtO158vtcpfpmwbxdWp6LxL2uLmzutxwgQ7uTpPbVaADOw/q2xlLNfyVQZJN2vL7djVoWVeGYWj2xDn6+r1vvdsZ9tJ/NXHoG7r5iX5q062VTNNUVlq2wqPDtPyLX7V5zVZ1u7GTPn7+c61YtEYxCVE6tKewd3DTcxrr9vEDlLY3Q0Ghgdq//aBsNslTYJT5b77H49H0pz8t07n78QQEOnV6+2a6+u6eJzQEU77Lre9n/agW55+mXRsLL84Uqd0kSckNE9Xu8rZqfHb9avuedKoQBlsYYbB1PD/oVe3Zslfjviq9R3BejktLZi7XOZecpQ/GzirzuDqlOefisxQVF6mQ8GDlZOYqLqWm8rLy5HDaFRAcqMga4XIGOhUQ5FRETLjCokPlcDoUHBpUrp5T+3ce1IoFq2UapvLz3Fr/y0ZFxUXq56+OHWq+8P3jlR7EVrd6zstxlan3+OHqn1FHcbVjdWGf85Wf55anwKOompHKzshReHSYnIFOedweGYahmIRoOZx2maZkeAwFBDm9N4qqTkzTlNvlPqEQscBdIMNjyBnoLFETngKP/l61RRt/26JPXzn6+GrOAIduH3+T9+vurbu2lMdjHLV3zaliGIZ27tilrF05enFIYc+Ka0f2UrvL21TpD7ymaeq3b37X6yPfLXV+7SZJiqoZqfiUmoqvG6fstGydc+nZp/Qri1XFq3e/XezGa6Xxl+Fijnx//mX+b1q5cE2ZL7ycanWa1lJK01pKqh/v/ZsZUSNcgcEBCggKUGRsuELCK6aXrafAo/T9GcrLdmn9L38rfX+mfpq7Qp4Cj9L2ZZR5OzUSo9W5b3t9Omme8vPcxeY5AxwqcHvUumsrNTqznpIaJigsKlRhUaGKiAmXKzdfwWFBJ/W30jRNbV6zVbUaJ+mpG14sdainI/UddZXOu7xNlerBnZ+Xr7cf/rDU0PpYTmRYqqIP9kU9CGOTYrw3yq3bvLYkacsf28u1zZNVq3GSgoIDFRQaqIyDWd6gLKlBgvbvOKiImDCFx4TJU2AovnasDMNUYHCAouOj5MrN19JPfyp2wctutyksKlR52a4yD2tQVtHxUbpz0qAT/iaBvyj62v62v3bq6RtfKvN6R9Z0Yr04nXNJa8XXqankhgmKqBFe+I0RH59HFoXX+Xluff7qV4UXF3aW7YbTx1MU0h3One/2eecSq/J4PFr22S9yBji05vu1Zeo0U1YnM3Tgox/fo4DgQP3fpU8e9d4N1Z2nwKP7uz+m7Izccq3Xot1puuXZG07574Rpmpo9cY6+/WipXLn53ukBgU7FJETJNKVm5zZRREyYYhKjlVA3Tg6nQzUSoxUUGqigkJLfJj64+5AiYyOO2eGiOiAMtjDCYOt47r+TtHfbfo2b91CZlvcUFIZ2DqdDWWnZeu2edxRZI+KEr5iWlTPAoai4SEXHRSksMkQBQQHKSstWUEigImtGKjstWxkHsxQQ6NRfP20o83b73FcYVPnqhKk613P6/gyN6vFEpezLbrfJZrfLbrfJ4XQUXll32BUQ6PQGIQFBAQoOC1ZIWJCCQoMUEh6s4PBghUaEKCQiWMFhwQr959+Q8GAFBDm96wUEOeVwOGSapjwFHrldbuXnueXKzVdBfoHysl0qcBco40CWXDkueQo8cuXmKzczT1lp2Tq0O03pBzKUlZYjd16+8vPccucXKCwyRPmuAgWHBhYGw/98FinIL1BBfoE8BYWBt+ExVPSXJifz3xOciBrhhcFwgEPOAKfS9qbL4zGKHZvze52j7et2qtO156vFeaf5dNiO6lzPRTIOZOqX+atkGoY2rNikv37coIAgp3Kz8lTg9hRbNqJGuCJjI2QahgKCApSbmav4OnGFr6/bowJ3gQrchcFCSFiwN0yy2W3/9kKzyft/m03SYf8vnF/6/232wmJyBji9IYbDaVdgcKCCw4IUHR+loH/qrmh6YHCAnIHOf2qv8Lk4A51yOB36+7ct+vy1r7zBXnBokB7/fJRCI0K8w9UYhiHTNOVwVJ1QrCIdq56Lgos/l67TJy/P1Y4Nu73z4uvUVHRclNL2pev6B69WQJBTyY0SlXEg66g3Zi3qiTT1sY8VHR+lAndBiSEVysLhsMsZ6JQzwKGAoAA5nA45A52FIarDLpsKa6coeJVpyu4ofG7u/MILUXan3XsxNTczV+78AmWn5xx338GhQcrLcem0Ng219ueNumPSLf/cwCdepqkSQyiZpqmln/6saU9+LMMo26l2cFiQImuEK6VpbYVHhyk0MkRhkSEKCg2S7Z+/D5Lk8f7+eeQp8CjrULbW/rTBOzZ0WYz76iHLfFXfne/WXz9u0OyXv9SuDXvV+87LtPq7P7Xul40+a1Ni/Xi1vKC5ug3opG9nLNWnk+ZJksKiQstUb6fSaW0aav/Og95wzm63lVqTh48v3qZbK+3bfkDb1+3yvp9GxITp6rt6avu6Xep2YyfvUDU4cR6PR++N+eioY9KXJTw7/H3R7nTIGeBQYHCg9zww6J+/jwFBAf90SgmQ3WGXw2H3niM6A50yTck0DO85m+ExvD3hTcP0/r/A7VFOZq4y9mfI7S6QO8+ttL3pxw2wzulxltp0a6Ww6DB5Cjxa/e2fapraWG6XW0EhgWrQqi4BbxWW73Jr1eI/5HDa9b/7jj68wbGUVs+3P3+jpjz8gYJCg+QMcGj/joO67v96K75OTdkddkXFRVqyc0JZGIah/LzC34/CjMKUzSYVuD3KTstWbHKNSrsQtHvzXv3xw1qt/3WT8rLztGfr/uOOnxwaEVLY+Sk4QIbHkCvHpQK3RyNeu7Vc46dXRYTBFkYYbB3PDXxFe7cfKHMYXF7Z6dn//Jsjj8eQx+1R+v5MeQo8stlscjjtcjgLP5RmHcpSgduj/Dy3stKylZ2WLU+Bobwcl/Ky8pS2P0MZ+zOUk5Erzz93LTUNQ4Zhent15GTkqmbtWJ13eVvt3Lhba5b8qYS68ep8XQfFp8SqVuMkbV6zVfVOr+PzXgKSNevZNE3t3bpfX739jQKDA7V4RuEYxOf3OkdhUaHKPJCl4LAg/b50rZq2bVR40pyRo8DgQNnsNpmG6Q3ICtyewpPuf06+PZ5/TsKNwjvXut0FhcHrP+FtXlaeXLn5JzR+2tE+/JVFQKCzMBisGaHAoMIPGMFhwcrYnyFnoFP5uflyuwukfzbvDCj8UFKkKNgzDVNh0WFyOO3e3xVJ2rNlr6ITohWbGC3DMFWnWW3F16mpsy46vUp9MLBiPRcxDEOH9qRrz+a9+nHOisKv3tmkg7vSvIG+w+nQwV2HFBgSWPihMsChgH8+QOZk5MgwCnsGyfy3l5BpSjrK/31x+mG32zTo6RvUqmOLSt93VVPV6rnAXaC/V23RoT3psjvsyst2KScjR25X4cWljAOZysnIkafAkNvllttd8M/FrQLlZuWp6IpT0d9ixz/vQYVBhqGAfy4ceAoM2e02OQOdCo0MUUBA4QWDhHrxCosKVVRcpGw2KScjV+f2bH1SYyQezjAM7dywW/l5bu3Zsk9ZadnKz81X+v5MZRzIVGBwgNL2ZujQnjRvz9QTER0fpZiEKG1avVW9hvZQh96pks1W7huyVTel1fORwyMcKTc7T2l70rXul7+VcSBThqfwq71rlvylwOAAFeQXqN4ZdVSzVg3F16kpV45LUXGRp/yCUdH7ZdFFKU+BRzs37JZpFo5dnp2eo4CgwvY4Awt7U9nttsJewjXC9fv3a+Vw2hWTEK0d63epaWpjRcVFauPKzWp8dn3vt3iONmwSY6pWTa68fH01daGctgCtWfKXNq3eqrMuPF2eAo+CQoMUGhkqV47L+75YdIHInV94zliQ/+85pNvlLnHB92SFRoQoMDhAgcEBiogpvHgcEBygrEPZqn1asuo0q62zLzrjlO4TVVPRxfS8bJd2btitwOAA1W1eOBRhdkaOAgILLzgUvUcXvd/wvlO95eflKystWzs37lF2eo6y07KVn+fWvu0H5HF7dHB3mpwBDuXnueVw2hUSHqzImpHqeE27av8NPMJgCyMMto5nb35F+3ce1FNzH/R1U8qs6Mp70eDuWWnZCo0IkTPA6e3BVl1Qz6de0VXi3Kw85WXlKSczV7lZed7HuVl5hV8F/efk3/3PhwGPu0A2u71YL8rA4EA5A50KCg2UM8CpqJoRCgoNksNpV1BIoILDg71fYeaEjXqWKiY0+Dc4Lhkku/PylZOZp6DQQBkew9ubM31/ply5+crPzfcGgvl5+XK7Cry9RqXCE1VPgaGYhCid2fl0hUWF+u1rdyTquepy57uVm5lX+OEqPcf79cwCd4FstsKez45/LroVfYukZu1YBYUE+u17NfUMqznVNV10/liQX/DPRQfj36A4v8D7DbWicV8L/y38pppsNjkcdu8310LCg+UMcPrt+w3Kj/doWIlVwuDqPVgHUAbV7TzFbrdL9n//f3ivJP54wm63Kzg0qPArySdwcwDgZFTEB79j9dwLDApQWJTvhgYBfCEgMEABsQGKjD01vZIBoOj8UaElx/EEAPgfkiVYmim++gYAAAAAAABIhMGwONM0q1/XYAAAAAAAAKACEAbD2hgRGwAAAAAAAJBEGAyLK7zZka9bAQAAAAAAAPgeYTAsj5uuAQAAAAAAAITBsLjCMYN93QoAAAAAAADA9wiDYW2MGQwAAAAAAABIIgyGxRWOGUzXYAAAAAAAAIAwGJZGGAwAAAAAAAAUIgyG5ZEFAwAAAAAAAITBsDjTMEmDAQAAAAAAABEGw+JMkzvIAQAAAAAAABJhMCzONMWYwQAAAAAAAIAIg+EHyIIBAAAAAAAAwmBYnGkyZjAAAAAAAAAgEQbD6kyTYSIAAAAAAAAAEQbD4rh/HAAAAAAAAFCIMBiWZpomo0QAAAAAAAAAIgyGH2CYCAAAAAAAAIAwGFbHDeQAAAAAAAAASYTBsDiyYAAAAAAAAKBQlQqDPR6PHnroIdWvX18hISFq2LChHnvsMZmH3QXMNE09/PDDSkpKUkhIiLp06aL169cX287Bgwd13XXXKTIyUtHR0Ro4cKCysrIq++mgCjC5gxwAAAAAAAAgqYqFwePGjdOkSZP00ksv6c8//9S4ceP09NNPa+LEid5lnn76ab344ot69dVXtXz5coWFhal79+7Ky8vzLnPdddfp999/1/z58/X555/r22+/1S233OKLpwQfK7yBHF2DAQAAAAAAAKevG3C4H374QVdccYUuvfRSSVK9evX0/vvv68cff5RUGOxNmDBBDz74oK644gpJ0jvvvKOEhATNnj1bffr00Z9//qm5c+fqp59+Ups2bSRJEydO1CWXXKJnn31WycnJvnly8BmbnTAYAAAAAAAAqFJh8HnnnafXX39d69atU5MmTfTbb79pyZIlev755yVJmzZt0u7du9WlSxfvOlFRUUpNTdXSpUvVp08fLV26VNHR0d4gWJK6dOkiu92u5cuX68orryyxX5fLJZfL5X2ckZEhSTIMQ4ZhVNTTLZVhGDJNs9L3a1WmUThMBMfTN6hnWAn1DCuhnmEl1DOshpqGlVDPsJKy1HN1qPUqFQbff//9ysjIUNOmTeVwOOTxePTEE0/ouuuukyTt3r1bkpSQkFBsvYSEBO+83bt3Kz4+vth8p9OpGjVqeJc50tixYzV69OgS0/ft21ds+InKYBiG0tPTZZqm7PYqNYpHteRyueTMc2jv3r2+bopfop5hJdQzrIR6hpVQz7AaahpWQj3DSspSz5mZmZXcqvKrUmHw9OnTNXXqVE2bNk0tWrTQypUrdeeddyo5OVkDBgyosP2OGjVKd911l/dxRkaGUlJSFBcXp8jIyArbb2kMw5DNZlNcXBxvlKdAYECgQkJCSlwgQOWgnmEl1DOshHqGlVDPsBpqGlZCPcNKylLPwcHBldyq8qtSYfC9996r+++/X3369JEknXHGGdqyZYvGjh2rAQMGKDExUZK0Z88eJSUledfbs2ePzjzzTElSYmJiiV6gBQUFOnjwoHf9IwUFBSkoKKjEdLvd7pM3K5vN5rN9W42pwjGDOZa+Qz3DSqhnWAn1DCuhnmE11DSshHqGlRyvnqtDnVepFubk5JQ4aA6HwzveRv369ZWYmKgFCxZ452dkZGj58uVq166dJKldu3ZKS0vTL7/84l1m4cKFMgxDqamplfAsUNXYbNxADgAAAAAAAKhSPYN79uypJ554QnXq1FGLFi20YsUKPf/887r55pslFYZ6d955px5//HE1btxY9evX10MPPaTk5GT16tVLktSsWTNdfPHFGjRokF599VW53W4NHTpUffr0UXJysg+fHXzCNGUTYTAAAAAAAABQpcLgiRMn6qGHHtLgwYO1d+9eJScn69Zbb9XDDz/sXWbkyJHKzs7WLbfcorS0NLVv315z584tNibH1KlTNXToUF100UWy2+3q3bu3XnzxRV88JfiYaZq+bgIAAAAAAABQJVSpMDgiIkITJkzQhAkTjrqMzWbTmDFjNGbMmKMuU6NGDU2bNq0CWojqxjQlRokAAAAAAAAAqtiYwcCpZpIGAwAAAAAAAJIIg+EHuIEcAAAAAAAAQBgMqzNNOgYDAAAAAAAAIgyGxXH/OAAAAAAAAKAQYTAszTRNhokAAAAAAAAARBgMq+MGcgAAAAAAAIAkwmD4AbJgAAAAAAAAgDAYFlfYMZg0GAAAAAAAACAMhqWZ3EEOAAAAAAAAkEQYDIszDVM2Oz2DAQAAAAAAAMJgWB7DRAAAAAAAAACEwfADhMEAAAAAAAAAYTAAAAAAAAAA+AXCYFgaN5ADAAAAAAAAChEGAwAAAAAAAIAfIAyGpdEzGAAAAAAAAChEGAzr4/5xAAAAAAAAAGEwAAAAAAAAAPgDwmBYGqNEAAAAAAAAAIUIg2F5NhvjRAAAAAAAAACEwbA2ugYDAAAAAAAAkgiD4QfoGQwAAAAAAAAQBgMAAAAAAACAXyAMhuXRMRgAAAAAAAAgDAYAAAAAAAAAv0AYDEszuYEcAAAAAAAAIIkwGAAAAAAAAAD8AmEwLI2OwQAAAAAAAEAhwmBYH3eQAwAAAAAAAAiDYXF0DQYAAAAAAAAkEQbDD9joGQwAAAAAAAAQBgMAAAAAAACAPyAMhqWZDBMBAAAAAAAASCIMhh9glAgAAAAAAACAMBgAAAAAAAAA/AJhMCyPG8gBAAAAAAAAhMEAAAAAAAAA4BcIg2Fp3D8OAAAAAAAAKEQYDAAAAAAAAAB+gDAYlmbSNRgAAAAAAACQRBgMf8AN5AAAAAAAAADCYAAAAAAAAADwB4TBsDw6BgMAAAAAAACEwQAAAAAAAADgFwiDYVncPA4AAAAAAAD4F2EwLM/GOBEAAAAAAAAAYTCsi57BAAAAAAAAwL8Ig2F99AwGAAAAAAAACIMBAAAAAAAAwB8QBgMAAAAAAACAHyAMBgAAAAAAAAA/QBgMy+IGcgAAAAAAAMC/CINhedw/DgAAAAAAACAMhpXRMRgAAAAAAADwIgyG5dnoGgwAAAAAAAAQBgMAAAAA8P/t3XuUlXW9P/DPHhlmuOMFBkk0TmqIohfRNN8AACy2SURBVOIlGfSkGQFpF4zqpOTCDsvUBhM5q1wYgVJq3tI0DbsI2VFTUpPwCkjkSUzES3hZaF5CwQFN5aIxDOzv7w9/bpq4zciGPT779VprVu5nP/N9vs/2vabhzdfvAwDlQBlMZnmAHAAAAABsoAwm82wTAQAAAACtsAxesmRJfP3rX49dd9012rVrF/369YtHH3208H5KKSZMmBC77757tGvXLgYNGhTPP/98kzHefPPNGDFiRHTu3Dm6du0ao0aNitWrV+/oW6HErAwGAAAAgA1aVRn81ltvxZFHHhmVlZVxzz33xDPPPBOXX3557LzzzoVzLrnkkrjqqqti8uTJ8Ze//CU6dOgQQ4YMiTVr1hTOGTFiRDz99NMxc+bMmDFjRvzpT3+Kb37zm6W4JVoDC4MBAAAAINqUegL/6uKLL45evXrFlClTCsd69+5d+OeUUlx55ZUxfvz4+OIXvxgRETfccEPU1NTE73//+/ja174Wzz77bNx7770xf/78OOywwyIi4uqrr47jjjsuLrvssujZs+eOvSkAAAAAgFagVZXB06dPjyFDhsRXvvKVmDt3bnzkIx+Jb33rW3HqqadGRMRLL70U9fX1MWjQoML3dOnSJY444oiYN29efO1rX4t58+ZF165dC0VwRMSgQYOioqIi/vKXv8QJJ5yw0XUbGhqioaGh8HrlypUREZHP5yOfz2+v292kfD4fKaUdft0syuff2yYipfB5log8kyXyTJbIM1kiz2SNTJMl8kyWNCfPH4ast6oy+MUXX4yf/exnMXbs2Dj33HNj/vz58e1vfzvatm0bI0eOjPr6+oiIqKmpafJ9NTU1hffq6+uje/fuTd5v06ZN7LLLLoVz/t1FF10U559//kbHX3/99SbbT+wI+Xw+VqxYESmlqKhoVbt4fOisW7su1jU2xrvvvBPLly8v9XTKkjyTJfJMlsgzWSLPZI1MkyXyTJY0J8+rVq3awbNquVZVBufz+TjssMPiwgsvjIiI/v37x1NPPRWTJ0+OkSNHbrfrjhs3LsaOHVt4vXLlyujVq1d069YtOnfuvN2uuyn5fD5yuVx069bND8pttLahMdpUVkb7Dh02+gsCdgx5JkvkmSyRZ7JEnskamSZL5JksaU6eq6urd/CsWq5VlcG777579O3bt8mx/fbbL2677baIiOjRo0dERCxbtix23333wjnLli2Lgw8+uHDOv68CXbduXbz55puF7/93VVVVUVVVtdHxioqKkvywyuVyJbt2lrz/+VVU5HyWJSTPZIk8kyXyTJbIM1kj02SJPJMlW8vzhyHnrWqGRx55ZCxatKjJseeeey722muviHjvYXI9evSI2bNnF95fuXJl/OUvf4na2tqIiKitrY233347FixYUDjngQceiHw+H0ccccQOuAtajZRKPQMAAAAAaDVa1crgs88+OwYOHBgXXnhhfPWrX41HHnkkfv7zn8fPf/7ziHivfR8zZkz88Ic/jH322Sd69+4d3//+96Nnz54xbNiwiHhvJfHQoUPj1FNPjcmTJ0djY2OMHj06vva1r0XPnj1LeHeUSi6XK/UUAAAAAKDkWlUZfPjhh8cdd9wR48aNi0mTJkXv3r3jyiuvjBEjRhTO+e53vxvvvPNOfPOb34y33347jjrqqLj33nub7Mlx4403xujRo+PTn/50VFRUxPDhw+Oqq64qxS1RQsnKYAAAAAAoaFVlcETE5z73ufjc5z632fdzuVxMmjQpJk2atNlzdtlll7jpppu2x/T4ELIyGAAAAABa2Z7BAAAAAABsH8pgMssuEQAAAACwgTKY7LNLBAAAAAAogwEAAAAAyoEyGAAAAACgDCiDAQAAAADKgDKYzEqeIAcAAAAABcpgMi+X8wQ5AAAAAFAGk11WBgMAAABAgTKYzLMyGAAAAACUwWSYhcEAAAAAsIEymOyzMBgAAAAAlMEAAAAAAOVAGUxmJftEAAAAAECBMpjM8wA5AAAAAFAGAwAAAACUBWUwAAAAAEAZKGoZvG7dupg1a1Zcd911sWrVqoiIWLp0aaxevbqYl4HmsWcwAAAAABS0KdZAf//732Po0KGxePHiaGhoiM985jPRqVOnuPjii6OhoSEmT55crEtBi9gzGAAAAACKuDL4rLPOisMOOyzeeuutaNeuXeH4CSecELNnzy7WZQAAAAAA+ACKtjL4wQcfjIceeijatm3b5PhHP/rRWLJkSbEuA81mlwgAAAAA2KBoK4Pz+XysX79+o+OvvvpqdOrUqViXgRazSwQAAAAAFLEMHjx4cFx55ZWF17lcLlavXh0TJ06M4447rliXgWZLlgYDAAAAQEHRtom47LLLYujQodG3b99Ys2ZNnHTSSfH888/HbrvtFjfffHOxLgMtZ2kwAAAAABSvDO7Vq1c8+eSTccstt8STTz4Zq1evjlGjRsWIESOaPFAOdhQrgwEAAABgg6KUwY2NjdGnT5+YMWNGjBgxIkaMGFGMYaEoclYGAwAAAEBx9gyurKyMNWvWFGMoAAAAAAC2g6I9QK6uri4uvvjiWLduXbGGBAAAAACgSIq2Z/D8+fNj9uzZcf/990e/fv2iQ4cOTd6//fbbi3UpAAAAAABaqGhlcNeuXWP48OHFGg62nefHAQAAAEBB0crgKVOmFGsoKCrPjwMAAACAIu4ZDAAAAABA61W0lcG9e/eO3BaWYL744ovFuhQ0S0r2iQAAAACA9xWtDB4zZkyT142NjfH444/HvffeG9/5zneKdRlosS39JQUAAAAAlIuilcFnnXXWJo9fc8018eijjxbrMtBsVgYDAAAAwAbbfc/gz372s3Hbbbdt78vA5lkZDAAAAADbvwz+3e9+F7vsssv2vgxsxMJgAAAAANigaNtE9O/fv8nerCmlqK+vj9dffz2uvfbaYl0GWszCYAAAAAAoYhk8bNiwJq8rKiqiW7duccwxx0SfPn2KdRkAAAAAAD6AopXBEydOLNZQAAAAAAAUWdH2DH7sscdi4cKFhdd33nlnDBs2LM4999xYu3ZtsS4DAAAAAMAHULQy+LTTTovnnnsuIiJefPHF+K//+q9o3759TJs2Lb773e8W6zLQfJ4gBwAAAAAFRSuDn3vuuTj44IMjImLatGlx9NFHx0033RRTp06N2267rViXgRbLeYIcAAAAABSvDE4pRT6fj4iIWbNmxXHHHRcREb169Yo33nijWJeBZktWBgMAAABAQdHK4MMOOyx++MMfxm9+85uYO3duHH/88RER8dJLL0VNTU2xLgMtZmUwAAAAABSxDL7yyivjsccei9GjR8f3vve92HvvvSMi4ne/+10MHDiwWJcBAAAAAOADaFOsgQ488MBYuHDhRscvvfTS2GmnnYp1GWg2u0QAAAAAwAZFWxn8yiuvxKuvvlp4/cgjj8SYMWPihhtuiMrKymJdBlrOLhEAAAAAULwy+KSTToo5c+ZERER9fX185jOfiUceeSS+973vxaRJk4p1GWg2D5ADAAAAgA2KVgY/9dRT8YlPfCIiIm699dY44IAD4qGHHoobb7wxpk6dWqzLQIt5gBwAAAAAFLEMbmxsjKqqqoiImDVrVnzhC1+IiIg+ffrEa6+9VqzLAAAAAADwARStDN5///1j8uTJ8eCDD8bMmTNj6NChERGxdOnS2HXXXYt1GQAAAAAAPoCilcEXX3xxXHfddXHMMcfEiSeeGAcddFBEREyfPr2wfQQAAAAAAKXRplgDHXPMMfHGG2/EypUrY+eddy4c/+Y3vxnt27cv1mWg+TxADgAAAAAKirYyOCIipRQLFiyI6667LlatWhUREW3btlUGU1IeIAcAAAAARVwZ/Pe//z2GDh0aixcvjoaGhvjMZz4TnTp1iosvvjgaGhpi8uTJxboUNIuFwQAAAACwQdFWBp911llx2GGHxVtvvRXt2rUrHD/hhBNi9uzZxboMtJyFwQAAAABQvJXBDz74YDz00EPRtm3bJsc/+tGPxpIlS4p1GQAAAAAAPoCirQzO5/Oxfv36jY6/+uqr0alTpw805o9+9KPI5XIxZsyYwrE1a9ZEXV1d7LrrrtGxY8cYPnx4LFu2rMn3LV68OI4//vho3759dO/ePb7zne/EunXrPtAc+PBK9okAAAAAgIKilcGDBw+OK6+8svA6l8vF6tWrY+LEiXHccce1eLz58+fHddddFwceeGCT42effXb84Q9/iGnTpsXcuXNj6dKl8aUvfanw/vr16+P444+PtWvXxkMPPRS//vWvY+rUqTFhwoQPfG98uHmAHAAAAAAUcZuIyy67LIYOHRp9+/aNNWvWxEknnRTPP/987LbbbnHzzTe3aKzVq1fHiBEj4he/+EX88Ic/LBxfsWJF/OpXv4qbbropjj322IiImDJlSuy3337x8MMPx4ABA+L++++PZ555JmbNmhU1NTVx8MEHxw9+8IM455xz4rzzzttoG4uIiIaGhmhoaCi8XrlyZUS8t9o5n89/kI/jA8vn85FS2uHXzaL8+vc+Q59n6cgzWSLPZIk8kyXyTNbINFkiz2RJc/L8Ych60crgXr16xZNPPhm33HJLPPnkk7F69eoYNWpUjBgxoskD5Zqjrq4ujj/++Bg0aFCTMnjBggXR2NgYgwYNKhzr06dP7LnnnjFv3rwYMGBAzJs3L/r16xc1NTWFc4YMGRJnnHFGPP3009G/f/+NrnfRRRfF+eefv9Hx119/PdasWdOiuW+rfD4fK1asiJRSVFQUbeF2WXrjjTdjXWNjrF69KpYvX17q6ZQleSZL5JkskWeyRJ7JGpkmS+SZLGlOnletWrWDZ9VyRSmDGxsbo0+fPjFjxowYMWJEjBgx4gOP9dvf/jYee+yxmD9//kbv1dfXR9u2baNr165NjtfU1ER9fX3hnH8tgt9///33NmXcuHExduzYwuuVK1dGr169olu3btG5c+cPfC8fRD6fj1wuF926dfODclutqYg2lZXRqVOn6N69e6lnU5bkmSyRZ7JEnskSeSZrZJoskWeypDl5rq6u3sGzarmilMGVlZVFWUH7yiuvxFlnnRUzZ87coR9eVVVVVFVVbXS8oqKiJD+scrlcya6dJRUV7+0VnMv5LEtJnskSeSZL5JkskWeyRqbJEnkmS7aW5w9Dzos2w7q6urj44otj3bp1H3iMBQsWxPLly+OQQw6JNm3aRJs2bWLu3Llx1VVXRZs2baKmpibWrl0bb7/9dpPvW7ZsWfTo0SMiInr06BHLli3b6P333wMAAAAAKEdF2zN4/vz5MXv27Lj//vujX79+0aFDhybv33777Vsd49Of/nQsXLiwybFvfOMb0adPnzjnnHOiV69eUVlZGbNnz47hw4dHRMSiRYti8eLFUVtbGxERtbW1ccEFF8Ty5csLWwPMnDkzOnfuHH379i3GrfIhkVKpZwAAAAAArUfRyuCuXbsWCtoPqlOnTnHAAQc0OdahQ4fYddddC8dHjRoVY8eOjV122SU6d+4cZ555ZtTW1saAAQMiImLw4MHRt2/fOPnkk+OSSy6J+vr6GD9+fNTV1W1yKwiyL5cr9QwAAAAAoPS2uQzO5/Nx6aWXxnPPPRdr166NY489Ns4777xo165dMea3kSuuuCIqKipi+PDh0dDQEEOGDIlrr7228P5OO+0UM2bMiDPOOCNqa2ujQ4cOMXLkyJg0adJ2mQ+tV7I0GAAAAAAKtrkMvuCCC+K8886LQYMGRbt27eKqq66K119/Pa6//vpizC/++Mc/NnldXV0d11xzTVxzzTWb/Z699tor7r777qJcnwywNBgAAAAAtv0BcjfccENce+21cd9998Xvf//7+MMf/hA33nhj5PP5YswPAAAAAIAi2OYyePHixXHccccVXg8aNChyuVwsXbp0W4eGbWKbCAAAAADYYJvL4HXr1kV1dXWTY5WVldHY2LitQ0NR5GwTAQAAAADbvmdwSilOOeWUqKqqKhxbs2ZNnH766dGhQ4fCsdtvv31bLwUtY2EwAAAAABRscxk8cuTIjY59/etf39ZhoWgsDAYAAACAIpTBU6ZMKcY8AAAAAADYjrZ5z2AAAAAAAFo/ZTAAAAAAQBlQBpNZKXmCHAAAAAC8TxlM5uU8QQ4AAAAAlMFkl5XBAAAAALCBMpjsszIYAAAAAJTBZJeFwQAAAACwgTKYzLMwGAAAAACUwQAAAAAAZUEZTHbZJwIAAAAACpTBZF7OPhEAAAAAoAwGAAAAACgHymAAAAAAgDKgDAYAAAAAKAPKYDIreYAcAAAAABQog8k+D5ADAAAAAGUw2WVhMAAAAABsoAwm8ywMBgAAAABlMBlmz2AAAAAA2EAZTOblLA0GAAAAAGUwAAAAAEA5UAaTXbaJAAAAAIACZTCZZ5sIAAAAAFAGAwAAAACUBWUwAAAAAEAZUAaTWbYMBgAAAIANlMFkny2DAQAAAEAZDAAAAABQDpTBZFayTwQAAAAAFCiDybxczj4RAAAAAKAMJrusDAYAAACAAmUwmWdlMAAAAAAogwEAAAAAyoIymMyySwQAAAAAbKAMJvPsEgEAAAAAymAAAAAAgLKgDAYAAAAAKAPKYDIr2TQYAAAAAAqUwWSfTYMBAAAAQBkMAAAAAFAOlMFklm0iAAAAAGADZTCZl7NNBAAAAAAog8kwC4MBAAAAoEAZTOZZGAwAAAAAymAyzJ7BAAAAALCBMpjMs2cwAAAAACiDAQAAAADKgjIYAAAAAKAMKIMBAAAAAMqAMpjM8gA5AAAAANhAGUz2eYAcAAAAALSuMviiiy6Kww8/PDp16hTdu3ePYcOGxaJFi5qcs2bNmqirq4tdd901OnbsGMOHD49ly5Y1OWfx4sVx/PHHR/v27aN79+7xne98J9atW7cjbwUAAAAAoFVpVWXw3Llzo66uLh5++OGYOXNmNDY2xuDBg+Odd94pnHP22WfHH/7wh5g2bVrMnTs3li5dGl/60pcK769fvz6OP/74WLt2bTz00EPx61//OqZOnRoTJkwoxS1RQnaJAAAAAIAN2pR6Av/q3nvvbfJ66tSp0b1791iwYEF88pOfjBUrVsSvfvWruOmmm+LYY4+NiIgpU6bEfvvtFw8//HAMGDAg7r///njmmWdi1qxZUVNTEwcffHD84Ac/iHPOOSfOO++8aNu2bSlujRKySwQAAAAAtLIy+N+tWLEiIiJ22WWXiIhYsGBBNDY2xqBBgwrn9OnTJ/bcc8+YN29eDBgwIObNmxf9+vWLmpqawjlDhgyJM844I55++uno37//RtdpaGiIhoaGwuuVK1dGREQ+n498Pr9d7m1z8vl8pJR2+HWzKL9+fUSEz7OE5JkskWeyRJ7JEnkma2SaLJFnsqQ5ef4wZL3VlsH5fD7GjBkTRx55ZBxwwAEREVFfXx9t27aNrl27Njm3pqYm6uvrC+f8axH8/vvvv7cpF110UZx//vkbHX/99ddjzZo123orLZLP52PFihWRUoqKila1i8eHzltvvRXrGhtj5cqVsXz58lJPpyzJM1kiz2SJPJMl8kzWyDRZIs9kSXPyvGrVqh08q5ZrtWVwXV1dPPXUU/F///d/2/1a48aNi7FjxxZer1y5Mnr16hXdunWLzp07b/fr/6t8Ph+5XC66devmB+U2erPrymhTWRmdu3SJ7t27l3o6ZUmeyRJ5JkvkmSyRZ7JGpskSeSZLmpPn6urqHTyrlmuVZfDo0aNjxowZ8ac//Sn22GOPwvEePXrE2rVr4+23326yOnjZsmXRo0ePwjmPPPJIk/GWLVtWeG9TqqqqoqqqaqPjFRUVJflhlcvlSnbtLKmoyP3///VZlpI8kyXyTJbIM1kiz2SNTJMl8kyWbC3PH4act6oZppRi9OjRcccdd8QDDzwQvXv3bvL+oYceGpWVlTF79uzCsUWLFsXixYujtrY2IiJqa2tj4cKFTbYFmDlzZnTu3Dn69u27Y24EAAAAAKCVaVUrg+vq6uKmm26KO++8Mzp16lTY47dLly7Rrl276NKlS4waNSrGjh0bu+yyS3Tu3DnOPPPMqK2tjQEDBkRExODBg6Nv375x8sknxyWXXBL19fUxfvz4qKur2+TqXwAAAACActCqyuCf/exnERFxzDHHNDk+ZcqUOOWUUyIi4oorroiKiooYPnx4NDQ0xJAhQ+Laa68tnLvTTjvFjBkz4owzzoja2tro0KFDjBw5MiZNmrSjbgMAAAAAoNVpVWVwSmmr51RXV8c111wT11xzzWbP2WuvveLuu+8u5tT4EGpGnAAAAACgbLSqPYNhe8jlSj0DAAAAACg9ZTCZ1ZyV5gAAAABQLpTBZF7O0mAAAAAAUAYDAAAAAJQDZTDZZZsIAAAAAChQBpN5tokAAAAAAGUwGWZhMAAAAABsoAwm+ywMBgAAAABlMAAAAABAOVAGAwAAAACUAWUwAAAAAEAZUAaTWckT5AAAAACgQBlM5uVyniAHAAAAAMpgssvKYAAAAAAoUAaTeVYGAwAAAIAyGAAAAACgLCiDySy7RAAAAADABspgMs8uEQAAAACgDCbDkqXBAAAAAFCgDCb7LA0GAAAAAGUwAAAAAEA5UAYDAAAAAJQBZTAAAAAAQBlQBpNZHiAHAAAAABsog8m8nAfIAQAAAIAymAyzMBgAAAAACpTBZJ6FwQAAAACgDAYAAAAAKAvKYDLLA+QAAAAAYANlMNlnnwgAAAAAUAaTXVYGAwAAAMAGymAyL2dlMAAAAAAogwEAAAAAyoEyGAAAAACgDCiDAQAAAADKgDKYzPL8OAAAAADYQBlM5nl+HAAAAAAogwEAAAAAyoIymOyyTwQAAAAAFCiDybycfSIAAAAAQBlMdiUrgwEAAACgQBkMAAAAAFAGlMFkn20iAAAAAEAZTHbZJQIAAAAANlAGAwAAAACUAWUwmWeXCAAAAABQBgMAAAAAlAVlMAAAAABAGVAGk1nJE+QAAAAAoEAZDAAAAABQBpTBAAAAAABlQBlMdv3/bSJyuVyJJwIAAAAApacMBgAAAAAoA8pgMuv958dZGQwAAAAAymAAAAAAgLKgDAYAAAAAKAPKYDIrFfaJKO08AAAAAKA1UAYDAAAAAJQBZTAAAAAAQBlQBpN5uZx9IgAAAACgTaknQGmtemt1NDY0lnoaRbd88Rvx64m3lHoaAAAAANBqKIM34f0Hj61cuXKHXzufz8eqVauiuro6Kiq2/8LtX42/MZ6et2i7X6eUGtY1lOTfJTs+z7A9yTNZIs9kiTyTNTJNlsgzWdKcPL/fP73fLbZGudSaZ1cir776avTq1avU0wAAAAAAPmReeeWV2GOPPUo9jU1SBm9CPp+PpUuXRqdOnXb4frMrV66MXr16xSuvvBKdO3feodeGYpNnskSeyRJ5JkvkmayRabJEnsmS5uQ5pRSrVq2Knj17ttrV8LaJ2ISKioqSt/edO3f2g5LMkGeyRJ7JEnkmS+SZrJFpskSeyZKt5blLly47cDYt1zoragAAAAAAikoZDAAAAABQBpTBrUxVVVVMnDgxqqqqSj0V2GbyTJbIM1kiz2SJPJM1Mk2WyDNZkpU8e4AcAAAAAEAZsDIYAAAAAKAMKIMBAAAAAMqAMhgAAAAAoAwogwEAAAAAykDZlsEXXXRRHH744dGpU6fo3r17DBs2LBYtWtTknDVr1kRdXV3suuuu0bFjxxg+fHgsW7asyTnf/va349BDD42qqqo4+OCDN3mt++67LwYMGBCdOnWKbt26xfDhw+Pll1/e6hynTZsWffr0ierq6ujXr1/cfffdTd5fvXp1jB49OvbYY49o165d9O3bNyZPnrzVcS+44IIYOHBgtG/fPrp27brR+//4xz9i6NCh0bNnz6iqqopevXrF6NGjY+XKlVsdm9KQ583nOSIil8tt9PXb3/52q2NTGvK8+TxPnTp1k3nO5XKxfPnyrY7PjifPW/75PHv27Bg4cGB06tQpevToEeecc06sW7duq2NTGuWa55dffjlGjRoVvXv3jnbt2sXHPvaxmDhxYqxdu7bJfZ9yyinRr1+/aNOmTQwbNmyrc6W05HnzeV60aFF86lOfipqamqiuro7/+I//iPHjx0djY+NW50xpyPPm8/zyyy9v8nfnhx9+eKtzpnRkevOZPu+88zaZ6Q4dOmx1zgWpTA0ZMiRNmTIlPfXUU+mJJ55Ixx13XNpzzz3T6tWrC+ecfvrpqVevXmn27Nnp0UcfTQMGDEgDBw5sMs6ZZ56ZfvrTn6aTTz45HXTQQRtd58UXX0xVVVVp3Lhx6W9/+1tasGBB+uQnP5n69++/xfn9+c9/TjvttFO65JJL0jPPPJPGjx+fKisr08KFCwvnnHrqqeljH/tYmjNnTnrppZfSddddl3baaad05513bnHsCRMmpB//+Mdp7NixqUuXLhu9/+abb6Zrr702zZ8/P7388stp1qxZ6eMf/3g68cQTtzgupSPPm89zSilFRJoyZUp67bXXCl///Oc/tzgupSPPm8/zu+++2yTHr732WhoyZEg6+uijtzgupSPPm8/zE088kdq2bZvOP//89Pzzz6c//vGPqU+fPul//ud/tjgupVOueb7nnnvSKaecku677770wgsvpDvvvDN17969SVZXr16dTj/99PTzn/88DRkyJH3xi1/cyqdJqcnz5vP8wgsvpOuvvz498cQT6eWXXy6cM27cuK19rJSIPG8+zy+99FKKiDRr1qwmv0OvXbt2ax8rJSTTm8/0qlWrNvozYd++fdPIkSO38qluULZl8L9bvnx5iog0d+7clFJKb7/9dqqsrEzTpk0rnPPss8+miEjz5s3b6PsnTpy4yWBNmzYttWnTJq1fv75wbPr06SmXy23xh89Xv/rVdPzxxzc5dsQRR6TTTjut8Hr//fdPkyZNanLOIYcckr73ve9t+Wb/vylTpmy2PPt3P/nJT9Iee+zRrHMpPXluKiLSHXfc0axxaH3kefOWL1+eKisr0w033NCscSk9ed5g3Lhx6bDDDmtybPr06am6ujqtXLmyWWNTWuWY5/ddcsklqXfv3pt8b+TIkcrgDyF53nSe33f22Weno446qkXjUjryvCHP75fBjz/+eIvGoXWR6c3/jH7iiSdSRKQ//elPzR6zbLeJ+HcrVqyIiIhddtklIiIWLFgQjY2NMWjQoMI5ffr0iT333DPmzZvX7HEPPfTQqKioiClTpsT69etjxYoV8Zvf/CYGDRoUlZWVm/2+efPmNbl2RMSQIUOaXHvgwIExffr0WLJkSaSUYs6cOfHcc8/F4MGDmz2/5li6dGncfvvtcfTRRxd1XLYfed5YXV1d7LbbbvGJT3wirr/++kgpFWVctj953rwbbrgh2rdvH1/+8peLOi7bjzxv0NDQENXV1U2OtWvXLtasWRMLFizYprHZMco5zytWrCjcN9kgz5vP89/+9re49957/XnwQ0SeN87zF77whejevXscddRRMX369BaNSenJ9OZ/Rv/yl7+MfffdN/7zP/+z2WMqgyMin8/HmDFj4sgjj4wDDjggIiLq6+ujbdu2G+1xV1NTE/X19c0eu3fv3nH//ffHueeeG1VVVdG1a9d49dVX49Zbb93i99XX10dNTc0Wr3311VdH3759Y4899oi2bdvG0KFD45prrolPfvKTzZ7flpx44onRvn37+MhHPhKdO3eOX/7yl0UZl+1Lnjc2adKkuPXWW2PmzJkxfPjw+Na3vhVXX331No/L9ifPW/arX/0qTjrppGjXrl1Rx2X7kOemhgwZEg899FDcfPPNsX79+liyZElMmjQpIiJee+21bRqb7a+c8/y3v/0trr766jjttNOa/T20bvK86TwPHDgwqqurY5999on//M//LPyMpnWT56Z57tixY1x++eUxbdq0uOuuu+Koo46KYcOGKYQ/RGR6879zrFmzJm688cYYNWpUs8eMUAZHxHsrBp966qnt8kCp+vr6OPXUU2PkyJExf/78mDt3brRt2za+/OUvR0opFi9eHB07dix8XXjhhc0e++qrr46HH344pk+fHgsWLIjLL7886urqYtasWRERcfrppzcZu6WuuOKKeOyxx+LOO++MF154IcaOHdviMdjx5Hlj3//+9+PII4+M/v37xznnnBPf/e5349JLL23RGJSGPG/evHnz4tlnn23x//FTOvLc1ODBg+PSSy+N008/PaqqqmLfffeN4447LiIiKir8itralWuelyxZEkOHDo2vfOUrceqppxbtnikted50nm+55ZZ47LHH4qabboq77rorLrvssg/+QbDDyHPTPO+2224xduzYOOKII+Lwww+PH/3oR/H1r3/dnwc/RGR6879z3HHHHbFq1aoYOXJky268RRtVZFBdXV3aY4890osvvtjk+OzZs1NEpLfeeqvJ8T333DP9+Mc/3micze0/Mn78+I32w3vllVcK+5g0Njam559/vvD1j3/8I6WUUq9evdIVV1zR5PsmTJiQDjzwwJTSew8RqqysTDNmzGhyzqhRo9KQIUNSSiktW7asydj/riV7Bj/44IMpItLSpUubdT6lIc9dNjq+KTNmzEgRkdasWdOs8ykNee6y0fF/9d///d/p4IMP3uI5tB7y3GWj4+/L5/NpyZIl6d13303PPPNMioj0yCOPbPZ8Sq9c87xkyZK0zz77pJNPPrnJ3oL/zp7BHy7yvOU8v+83v/lNateuXVq3bt1Wz6V05Ll5ef7pT3+aevTosdXzKD2Z3nKmjz322DRs2LDNvr85ZbvsIqUUo0ePjjvuuCMeeOCB6N27d5P3Dz300KisrIzZs2cXji1atCgWL14ctbW1zb7Ou+++u9Hqlp122iki3lvq3qZNm9h7770LX+/vA1JbW9vk2hERM2fOLFy7sbExGhsbNzl2Pp+PiIju3bs3GXtbvD9mQ0PDNo3D9iHPLfPEE0/EzjvvHFVVVds0DtuHPG/d6tWr49Zbb7Uq+ENAnrcul8tFz549o127dnHzzTdHr1694pBDDmnxOGx/5ZznJUuWxDHHHBOHHnpoTJkyxer1DJDnluU5n89HY2NjYWxaF3luWZ6feOKJ2H333Zt93+x4Mr31TL/00ksxZ86cD/ZnwhbXxxlxxhlnpC5duqQ//vGP6bXXXit8vfvuu4VzTj/99LTnnnumBx54ID366KOptrY21dbWNhnn+eefT48//ng67bTT0r777psef/zx9Pjjj6eGhoaU0nt/W5HL5dL555+fnnvuubRgwYI0ZMiQtNdeezW51r/785//nNq0aZMuu+yy9Oyzz6aJEyemysrKtHDhwsI5Rx99dNp///3TnDlz0osvvpimTJmSqqur07XXXrvFe//73/+eHn/88XT++eenjh07Fua8atWqlFJKd911V7r++uvTwoUL00svvZRmzJiR9ttvv3TkkUe2+HNmx5Dnzed5+vTp6Re/+EVauHBhev7559O1116b2rdvnyZMmNDiz5kdQ543n+f3/fKXv0zV1dUb/U04rY88bznPl1xySfrrX/+annrqqTRp0qRUWVmZ7rjjjpZ8xOxA5ZrnV199Ne29997p05/+dHr11Veb3Pu/evrpp9Pjjz+ePv/5z6djjjmmcF+0TvK8+Tz/7//+b7rlllvSM888k1544YV0yy23pJ49e6YRI0a0+HNmx5Dnzed56tSp6aabbkrPPvtsevbZZ9MFF1yQKioq0vXXX9/iz5kdR6a3/DtHSu+tau7Zs+cH+i82yrYMjohNfk2ZMqVwzj//+c/0rW99K+28886pffv26YQTTtjoX8DRRx+9yXFeeumlwjk333xz6t+/f+rQoUPq1q1b+sIXvpCeffbZrc7x1ltvTfvuu29q27Zt2n///dNdd93V5P3XXnstnXLKKalnz56puro6ffzjH0+XX355yufzWxx35MiRm5zznDlzUkopPfDAA6m2tjZ16dIlVVdXp3322Sedc845SodWTJ43n+d77rknHXzwwaljx46pQ4cO6aCDDkqTJ09u1n8+RGnI8+bz/L7a2tp00kknbXWelJ48bznPn/rUpwq/bxxxxBHp7rvv3up8KZ1yzfOUKVM2e+//aq+99trqObQe8rz5rP72t79NhxxySOH35759+6YLL7ww/fOf/9zqnCkNed58nqdOnZr222+/1L59+9S5c+f0iU98Ik2bNm2r86W0ZHrLv0+sX78+7bHHHuncc8/d6jw3JZdSSgEAAAAAQKbZ7AoAAAAAoAwogwEAAAAAyoAyGAAAAACgDCiDAQAAAADKgDIYAAAAAKAMKIMBAAAAAMqAMhgAAAAAoAwogwEAAAAAyoAyGAAA/sUpp5wSw4YNK/U0AACg6NqUegIAALCj5HK5Lb4/ceLE+MlPfhIppR00IwAA2HGUwQAAlI3XXnut8M+33HJLTJgwIRYtWlQ41rFjx+jYsWMppgYAANudbSIAACgbPXr0KHx16dIlcrlck2MdO3bcaJuIY445Js4888wYM2ZM7LzzzlFTUxO/+MUv4p133olvfOMb0alTp9h7773jnnvuaXKtp556Kj772c9Gx44do6amJk4++eR44403dvAdAwDABspgAADYil//+tex2267xSOPPBJnnnlmnHHGGfGVr3wlBg4cGI899lgMHjw4Tj755Hj33XcjIuLtt9+OY489Nvr37x+PPvpo3HvvvbFs2bL46le/WuI7AQCgnCmDAQBgKw466KAYP3587LPPPjFu3Liorq6O3XbbLU499dTYZ599YsKECfGPf/wj/vrXv0ZExE9/+tPo379/XHjhhdGnT5/o379/XH/99TFnzpx47rnnSnw3AACUK3sGAwDAVhx44IGFf95pp51i1113jX79+hWO1dTURETE8uXLIyLiySefjDlz5mxy/+EXXngh9t133+08YwAA2JgyGAAAtqKysrLJ61wu1+RYLpeLiIh8Ph8REatXr47Pf/7zcfHFF2801u67774dZwoAAJunDAYAgCI75JBD4rbbbouPfvSj0aaNX7kBAGgd7BkMAABFVldXF2+++WaceOKJMX/+/HjhhRfivvvui2984xuxfv36Uk8PAIAypQwGAIAi69mzZ/z5z3+O9evXx+DBg6Nfv34xZsyY6Nq1a1RU+BUcAIDSyKWUUqknAQAAAADA9mVZAgAAAABAGVAGAwAAAACUAWUwAAAAAEAZUAYDAAAAAJQBZTAAAAAAQBlQBgMAAAAAlAFlMAAAAABAGVAGAwAAAACUAWUwAAAAAEAZUAYDAAAAAJQBZTAAAAAAQBn4f5EeelhyhmMDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "def plot_combined_timeseries(\n", " combined_ds,\n", " variables=(\"temperature\", \"salinity\", \"pressure\"),\n", " cmap_name=\"viridis\",\n", " line_alpha=0.8,\n", " line_width=1.2,\n", " percentile_limits=(1, 99),\n", "):\n", " \"\"\"\n", " Plot selected variables from a combined mooring dataset as stacked time series.\n", "\n", " Parameters\n", " ----------\n", " combined_ds : xarray.Dataset\n", " Must have dims: time, N_LEVELS. Optional coords: nominal_depth, serial_number.\n", " variables : iterable[str]\n", " Variable names to try to plot (if present in dataset).\n", " cmap_name : str\n", " Matplotlib colormap name for coloring by instrument level.\n", " line_alpha : float\n", " Line transparency.\n", " line_width : float\n", " Line width.\n", " percentile_limits : (low, high)\n", " Percentiles to use for automatic y-limits (e.g., (1, 99)).\n", " \"\"\"\n", " if combined_ds is None:\n", " print(\"Combined dataset not available.\")\n", " return None, None\n", " n_levels = combined_ds.sizes.get(\"N_LEVELS\")\n", " if n_levels is None:\n", " raise ValueError(\"Dataset must contain dimension 'N_LEVELS'.\")\n", "\n", " available = [v for v in variables if v in combined_ds.data_vars]\n", " if not available:\n", " print(\"No requested variables found to plot.\")\n", " return None, None\n", "\n", " # Colors by level\n", " cmap = plt.get_cmap(cmap_name)\n", " colors = cmap(np.linspace(0, 1, n_levels))\n", "\n", " fig, axes = plt.subplots(\n", " len(available), 1, figsize=(14, 3.6 * len(available)), sharex=True, constrained_layout=True\n", " )\n", " if len(available) == 1:\n", " axes = [axes]\n", "\n", " depth_arr = combined_ds.get(\"nominal_depth\")\n", " serial_arr = combined_ds.get(\"serial_number\")\n", "\n", " first_axis = True\n", " for ax, var in zip(axes, available):\n", " values_for_limits = []\n", " for level in range(n_levels):\n", " depth = None if depth_arr is None else depth_arr.values[level]\n", " serial = None if serial_arr is None else serial_arr.values[level]\n", " label = None\n", " if first_axis:\n", " if depth is not None and np.isfinite(depth):\n", " label = f\"Serial {serial} ({int(depth)} m)\" if serial is not None else f\"({int(depth)} m)\"\n", " elif serial is not None:\n", " label = f\"Serial {serial}\"\n", "\n", " da = combined_ds[var].isel(N_LEVELS=level)\n", " da = da.where(np.isfinite(da), drop=True)\n", " if da.size == 0:\n", " continue\n", "\n", " values_for_limits.append(da.values)\n", "\n", " ax.plot(\n", " da[\"time\"].values,\n", " da.values,\n", " color=colors[level],\n", " alpha=line_alpha,\n", " linewidth=line_width,\n", " label=label,\n", " )\n", "\n", " # Set labels and grid\n", " ax.set_ylabel(var.replace(\"_\", \" \").title())\n", " ax.grid(True, alpha=0.3)\n", " ax.set_title(f\"{var.replace('_', ' ').title()} — Combined Time Grid\")\n", "\n", " # Legend only once\n", " if first_axis:\n", " ax.legend(ncol=3, fontsize=8, loc=\"upper right\", frameon=False)\n", " first_axis = False\n", "\n", " # Auto y-limits based on percentiles\n", " if values_for_limits:\n", " flat = np.concatenate(values_for_limits)\n", " low, high = np.nanpercentile(flat, percentile_limits)\n", " ax.set_ylim(low, high)\n", "\n", " axes[-1].set_xlabel(\"Time\")\n", " return fig, axes\n", "\n", "# Usage:\n", "if 'combined_ds' in locals():\n", " plot_combined_timeseries(combined_ds)\n" ] } ], "metadata": { "kernelspec": { "display_name": "venv (3.11.7)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.7" } }, "nbformat": 4, "nbformat_minor": 5 }